Effect of the microstructure of suspension plasma-sprayed thermal barrier coatings on their thermal cycling damage

被引:5
作者
Yamazaki, Yasuhiro [1 ]
Shinomiya, Keisuke [2 ]
Hamaguchi, Tatsuya [3 ]
Habu, Yoichiro [4 ]
Takagi, Kaito [4 ]
机构
[1] Chiba Univ, Grad Sch Engn, 1-33 Yayoi Cho,Inage Ku, Chiba 26838522, Japan
[2] Chiba Univ, Grad Sch Sci & Engn, 1-33 Yayoi Cho,Inage Ku, Chiba 26838522, Japan
[3] TOCALO Co Ltd, Prod Tech Dept, Tokyo Plant, 1-1-1 Gyoda, Funabashi, Japan
[4] TOCALO Co Ltd, R&D Labs, 14-3 Minamifutami,Futami Cho, Akashi, Japan
基金
日本学术振兴会;
关键词
Thermal barrier coatings; Suspension plasma spray; Columnar microstructure; Thermal cycle fatigue; Delamination life; COLUMNAR MICROSTRUCTURE; STRENGTH;
D O I
10.1016/j.surfcoat.2023.129269
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The suspension plasma spray (SPS) technique has recently attracted attention due to the variety of microstructures achievable using submicron spray particles mixed with a solvent to form a suspension. Thermal barrier coatings (TBCs) with a columnar microstructure can be obtained using SPS. Because of its unique columnar microstructure achieving high strain tolerance, a top coat sprayed using this technique can efficiently suppress thermal cycling damage in SPS-TBCs. However, there are few reports on the effect of microstructure on the damage behavior of SPS-TBCs with a columnar structure. In this study, the effect of the top coat microstructure on the thermal cycling fatigue of SPS-TBCs was investigated. The size of the complex oxide formed on the top coat-bond coat interface and the length of the cracks at the interface (formed as a result of thermal cycling) increase with the column diameter in the top coat of SPS-TBCs. The thermal spray conditions affect the thermal cycling fatigue life of SPS-TBCs. The SPS-TBC with fine columnar structure exhibits superior thermal cycling fatigue life.
引用
收藏
页数:7
相关论文
共 28 条
[11]   Deposition and Characteristics of Submicrometer-Structured Thermal Barrier Coatings by Suspension Plasma Spraying [J].
Guignard, Alexandre ;
Mauer, Georg ;
Vassen, Robert ;
Stoever, Detlev .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2012, 21 (3-4) :416-424
[12]   Life Analysis of Industrial Gas Turbines Used As a Back-Up to Renewable Energy Sources [J].
Isaiah, Thank-God ;
Dabbashi, Siddig ;
Bosak, Dawid ;
Sampath, Suresh ;
Di Lorenzo, Giuseppina ;
Pilidis, Pericles .
PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON THROUGH-LIFE ENGINEERING SERVICES, 2015, 38 :239-244
[13]   Numerical stress analysis of the TBC-film cooling system under operating conditions considering the effects of thermal gradient and TGO growth [J].
Jiang, Jishen ;
Jiang, Lingxin ;
Cai, Zhenwei ;
Wang, Weizhe ;
Zhao, Xiaofeng ;
Liu, Yingzheng ;
Cao, Zhaomin .
SURFACE & COATINGS TECHNOLOGY, 2019, 357 :433-444
[14]  
Nguyen Nhan, 2018, 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, P1
[15]   Mechanistic understanding for degraded thermal barrier coatings [J].
Ogawa, K ;
Shoji, T ;
Aoki, H ;
Fujita, N ;
Torigoe, T .
JSME INTERNATIONAL JOURNAL SERIES A-SOLID MECHANICS AND MATERIAL ENGINEERING, 2001, 44 (04) :507-513
[16]  
Okada M., 2010, CRIEPI RES LAB REP
[17]   Adhesion strength of ceramic top coat in thermal barrier coatings subjected to thermal cycles: Effects of thermal cycle testing method and environment [J].
Okazaki, Masakazu ;
Yamagishi, Satoshi ;
Yamazaki, Yasuhiro ;
Ogawa, Kazuhiro ;
Waki, Hiroyuki ;
Arai, Masayuki .
INTERNATIONAL JOURNAL OF FATIGUE, 2013, 53 :33-39
[18]  
Oyama K., 2021, J TURBINE SOC JPN, V49, P414
[19]   Materials science - Thermal barrier coatings for gas-turbine engine applications [J].
Padture, NP ;
Gell, M ;
Jordan, EH .
SCIENCE, 2002, 296 (5566) :280-284
[20]   Suspension and solution thermal spray coatings [J].
Pawlowski, Lech .
SURFACE & COATINGS TECHNOLOGY, 2009, 203 (19) :2807-2829