Privacy-preserving data mining and machine learning in healthcare: Applications, challenges, and solutions

被引:12
作者
Naresh, Vankamamidi S. [1 ,3 ]
Thamarai, Muthusamy [2 ]
机构
[1] Sri Vasavi Engn Coll, Dept Comp Sci & Engn, Tadepalligudem, Andhra Pradesh, India
[2] Sri Vasavi Engn Coll, Dept Elect & Commun Engn, Tadepalligudem, Andhra Pradesh, India
[3] SriVasavi Engn Coll, Dept Comp Sci & Engn, Tadepalligudem 534101, Andhra Pradesh, India
关键词
data privacy; healthcare; privacy-preserving computational techniques; data mining; machine learning; federated learning; CLOUD; SECURITY; ATTACKS; THREATS; CLASSIFICATION; ALGORITHMS; PROTECTION; NETWORKS; SCHEME;
D O I
10.1002/widm.1490
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data mining (DM) and machine learning (ML) applications in medical diagnostic systems are budding. Data privacy is essential in these systems as healthcare data are highly sensitive. The proposed work first discusses various privacy and security challenges in these systems. To address these next, we discuss different privacy-preserving (PP) computation techniques in the context of DM and ML for secure data evaluation and processing. The state-of-the-art applications of these systems in healthcare are analyzed at various stages such as data collection, data publication, data distribution, and output phases regarding PPDM and input, model, training, and output phases in the context of PPML. Furthermore, PP federated learning is also discussed. Finally, we present open challenges in these systems and future research directions.This article is categorized under:Application Areas > Health CareTechnologies > Machine LearningCommercial, Legal, and Ethical Issues > Security and Privacy
引用
收藏
页数:42
相关论文
共 168 条
  • [41] Dowlin N, 2016, PR MACH LEARN RES, V48
  • [42] A PUBLIC KEY CRYPTOSYSTEM AND A SIGNATURE SCHEME BASED ON DISCRETE LOGARITHMS
    ELGAMAL, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (04) : 469 - 472
  • [43] Ermakova Tatiana, 2013, 2013 IEEE 15th Conference on Business Informatics (CBI), P93, DOI 10.1109/CBI.2013.22
  • [44] Dermatologist-level classification of skin cancer with deep neural networks
    Esteva, Andre
    Kuprel, Brett
    Novoa, Roberto A.
    Ko, Justin
    Swetter, Susan M.
    Blau, Helen M.
    Thrun, Sebastian
    [J]. NATURE, 2017, 542 (7639) : 115 - +
  • [45] Privacy Protection for Medical Data Sharing in Smart Healthcare
    Fang, Liming
    Yin, Changchun
    Zhu, Juncen
    Ge, Chunpeng
    Tanveer, M.
    Jolfaei, Alireza
    Cao, Zehong
    [J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 16 (03)
  • [46] Festag, 2020, J MEDICAL INTERNET R, V4, P14064
  • [47] Adversarial attacks on medical machine learning
    Finlayson, Samuel G.
    Bowers, John D.
    Ito, Joichi
    Zittrain, Jonathan L.
    Beam, Andrew L.
    Kohane, Isaac S.
    [J]. SCIENCE, 2019, 363 (6433) : 1287 - 1289
  • [48] Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures
    Fredrikson, Matt
    Jha, Somesh
    Ristenpart, Thomas
    [J]. CCS'15: PROCEEDINGS OF THE 22ND ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2015, : 1322 - 1333
  • [49] Ghazi B, 2021, ADV NEUR IN
  • [50] Gondara L, 2016, INT CONF DAT MIN WOR, P241, DOI [10.1109/ICDMW.2016.102, 10.1109/ICDMW.2016.0041]