CSCA U-Net: A channel and space compound attention CNN for medical image segmentation

被引:20
作者
Shu, Xin [1 ,2 ]
Wang, Jiashu [1 ]
Zhang, Aoping [1 ]
Shi, Jinlong [1 ]
Wu, Xiao-Jun [3 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Comp Sci, Zhenjiang 212100, Jiangsu, Peoples R China
[2] Dev & Related Dis Women & Children Key Lab Sichuan, Chengdu 610041, Sichuan, Peoples R China
[3] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Jiangsu, Peoples R China
关键词
U-net; Channel and spatial compound attention; Cross-layer feature fusion; Deep supervision; Medical image segmentation;
D O I
10.1016/j.artmed.2024.102800
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image segmentation is one of the vital steps in medical image analysis. A large number of methods based on convolutional neural networks have emerged, which can extract abstract features from multiple-modality medical images, learn valuable information that is difficult to recognize by humans, and obtain more reliable results than traditional image segmentation approaches. U-Net, due to its simple structure and excellent performance, is widely used in medical image segmentation. In this paper, to further improve the performance of U-Net, we propose a channel and space compound attention (CSCA) convolutional neural network, CSCA U-Net in abbreviation, which increases the network depth and employs a double squeeze-and-excitation (DSE) block in the bottleneck layer to enhance feature extraction and obtain more high-level semantic features. Moreover, the characteristics of the proposed method are three-fold: (1) channel and space compound attention (CSCA) block, (2) cross-layer feature fusion (CLFF), and (3) deep supervision (DS). Extensive experiments on several available medical image datasets, including Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETIS, CVC-T, 2018 Data Science Bowl (2018 DSB), ISIC 2018, and JSUAH-Cerebellum, show that CSCA U-Net achieves competitive results and significantly improves generalization performance. The codes and trained models are available at https://github.com/xiaolanshu/CSCA-U-Net.
引用
收藏
页数:13
相关论文
共 54 条
[1]  
Akbari M, 2018, IEEE ENG MED BIO, P69, DOI 10.1109/EMBC.2018.8512197
[2]   Towards automatic polyp detection with a polyp appearance model [J].
Bernal, J. ;
Sanchez, J. ;
Vilarino, F. .
PATTERN RECOGNITION, 2012, 45 (09) :3166-3182
[3]   Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl [J].
Caicedo, Juan C. ;
Goodman, Allen ;
Karhohs, Kyle W. ;
Cimini, Beth A. ;
Ackerman, Jeanelle ;
Haghighi, Marzieh ;
Heng, CherKeng ;
Becker, Tim ;
Minh Doan ;
McQuin, Claire ;
Rohban, Mohammad ;
Singh, Shantanu ;
Carpenter, Anne E. .
NATURE METHODS, 2019, 16 (12) :1247-+
[4]  
Chen Jieneng, 2021, arXiv, DOI DOI 10.48550/ARXIV.2102.04306
[5]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[6]  
Deng-Ping Fan, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12266), P263, DOI 10.1007/978-3-030-59725-2_26
[7]   Structure-measure: A New Way to Evaluate Foreground Maps [J].
Fan, Deng-Ping ;
Cheng, Ming-Ming ;
Liu, Yun ;
Li, Tao ;
Borji, Ali .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4558-4567
[8]  
Fan DP, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P698
[9]   Selective Feature Aggregation Network with Area-Boundary Constraints for Polyp Segmentation [J].
Fang, Yuqi ;
Chen, Cheng ;
Yuan, Yixuan ;
Tong, Kai-yu .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT I, 2019, 11764 :302-310
[10]   CE-Net: Context Encoder Network for 2D Medical Image Segmentation [J].
Gu, Zaiwang ;
Cheng, Jun ;
Fu, Huazhu ;
Zhou, Kang ;
Hao, Huaying ;
Zhao, Yitian ;
Zhang, Tianyang ;
Gao, Shenghua ;
Liu, Jiang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (10) :2281-2292