Quantification of wheat water footprint based on data assimilation of remote sensing and WOFOST model

被引:5
作者
Xue, Jing [1 ,2 ,3 ]
Sun, Shikun [1 ,2 ,3 ,4 ]
Luo, Li [1 ,2 ,3 ]
Gao, Zihan [1 ,2 ,3 ]
Yin, Yali [1 ,2 ,3 ]
Zhao, Jinfeng [1 ,2 ,3 ]
Li, Chong [1 ,2 ,3 ]
Wang, Yubao [1 ,2 ,3 ]
Wu, Pute [2 ,3 ]
机构
[1] Northwest A&F Univ, Key Lab Agr Soil & Water Engn Arid Semiarid Areas, Minist Educ, Yangling, Peoples R China
[2] Northwest A&F Univ, Inst Water Saving Agr Arid Reg China, Yangling, Peoples R China
[3] Natl Engn Res Ctr Water Saving Irrigat Yangling, Yangling, Peoples R China
[4] 23 Weihui Rd, Yangling, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Wheat water footprint; WOFOST model; Wheat yield; Data assimilation; LEAF-AREA INDEX; ENSEMBLE KALMAN FILTER; WINTER-WHEAT; SOIL-MOISTURE; DEFICIT IRRIGATION; YIELD ESTIMATION; MODIS-LAI; IN-SITU; CHINA; VARIABILITY;
D O I
10.1016/j.agrformet.2024.109914
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Water scarcity in agricultural production has emerged as a significant constraint to food security in China. To improve agricultural output and ensure its stability, it is imperative to assess the agricultural water use efficiency. The crop water footprint (WF) is an effective tool to assess the type, amount, and efficiency of agricultural water usage. However, existing quantitative studies on the crop water footprint within regions exhibit limitations in terms of their low spatial resolution and deficient spatial heterogeneity. In this study, the World Food Studies (WOFOST) model was combined with the Ensemble Kalman filter (EnKF) assimilation algorithm, with the leaf area index (LAI) and soil moisture (SM) obtained by remote sensing as state variables. An improved method for quantifying the WF of wheat based on crop model -remote sensing information data assimilation was proposed. Regarding the results, the average blue water footprint (WFblue), green water footprint (WFgreen), and total water footprint (WF) of wheat were 363 m3/t, 551 m3/t, and 914 m3/t, respectively. In the southern of the study area, WFgreen exhibits higher values, with lower levels in the north. WFblue and WF demonstrated inverse spatial patterns, with higher values observed in the northern areas and lower values in the southern regions. The spatial heterogeneity of WFblue and WF was more significant than that of WFgreen. The WF of wheat quantified by the data assimilation method had a high spatial resolution, and could be effectively used to explore the spatial heterogeneity of WF. This study can provide a reliable reference for the effective use of water resources.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Regional Winter Wheat Maturity Date Prediction Based on MODIS and WOFOST Model Data Assimilation
    Huang J.
    Gao X.
    Huang H.
    Ma H.
    Su W.
    Zhu D.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2019, 50 (09): : 186 - 193
  • [2] Oilseed Rape Yield Estimation Based on the WOFOST Model and Remote Sensing Data
    Guo Tao
    Wei Jingbo
    Tang Wenchao
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (10)
  • [3] Considering different water supplies can improve the accuracyof the WOFOST crop model and remote sensing assimilation in predicting wheat yield
    Xu, Xin
    Shen, Shuaijie
    Gao, Feng
    Wang, Jian
    Ma, Xinming
    Xiong, Shuping
    Fan, Zehua
    INTERNATIONAL AGROPHYSICS, 2022, 36 (04) : 337 - 349
  • [4] Assimilating SAR and optical remote sensing data into WOFOST model for improving winter wheat yield estimation
    Zhuo, Wen
    Huang, Jianxi
    Li, Li
    Huang, Ran
    Gao, Xinran
    Zhang, Xiaodong
    Zhu, Dehai
    2018 7TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2018, : 547 - 551
  • [5] Assimilating remote sensing-based VPM GPP into the WOFOST model for improving regional winter wheat yield estimation
    Zhuo, Wen
    Huang, Jianxi
    Xiao, Xiangming
    Huang, Hai
    Bajgain, Rajen
    Wu, Xiaocui
    Gao, Xinran
    Wang, Jie
    Li, Xuecao
    Wagle, Pradeep
    EUROPEAN JOURNAL OF AGRONOMY, 2022, 139
  • [6] The Dynamic Assessment Model for Monitoring Cadmium Stress Levels in Rice Based on the Assimilation of Remote Sensing and the WOFOST Model
    Liu, Feng
    Liu, Xiangnan
    Zhao, Liting
    Ding, Chao
    Jiang, Jiale
    Wu, Ling
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (03) : 1330 - 1338
  • [7] A review of data assimilation of remote sensing and crop models
    Jin, Xiuliang
    Kumar, Lalit
    Li, Zhenhai
    Feng, Haikuan
    Xu, Xingang
    Yang, Guijun
    Wang, Jihua
    EUROPEAN JOURNAL OF AGRONOMY, 2018, 92 : 141 - 152
  • [8] Coupling Hyperspectral Remote Sensing Data with a Crop Model to Study Winter Wheat Water Demand
    Zhang, Chao
    Liu, Jiangui
    Dong, Taifeng
    Pattey, Elizabeth
    Shang, Jiali
    Tang, Min
    Cai, Huanjie
    Saddique, Qaisar
    REMOTE SENSING, 2019, 11 (14)
  • [9] Progress and perspectives in data assimilation algorithms for remote sensing and crop growth model
    Huang, Jianxi
    Song, Jianjian
    Huang, Hai
    Zhuo, Wen
    Niu, Quandi
    Wu, Shangrong
    Ma, Han
    Liang, Shunlin
    SCIENCE OF REMOTE SENSING, 2024, 10
  • [10] Estimating winter wheat yield by assimilation of MODIS LAI into WOFOST model with Ensemble Kalman Filter
    Wang, Liyuan
    Huang, Jingfeng
    Gao, Ping
    Wu, Hongyan
    2017 6TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS, 2017, : 321 - 325