FIXED POINT AND WELL-POSEDNESS PROPERTIES OF UNIFORMLY LOCALLY CONTRACTIVE MAPPINGS

被引:0
作者
Reich, Simon [1 ]
Zaslavski, Alexander J. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Complete metric space; fixed point; inexact iterate; nonexpansive mapping; APPROXIMATION; CONVERGENCE; SET;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a 1961 paper by E. Rakotch it was shown that a uniformly locally contractive mapping on a complete metric space has a fixed point. In a recent paper of ours we have shown that for such a mapping, the fixed point problem is well posed and that inexact iterates of such a mapping converge to its unique fixed point, uniformly on bounded sets. In the present paper we extend these results to uniformly locally contractive nonself mappings defined on a closed subset of the complete metric space.
引用
收藏
页码:2543 / 2550
页数:8
相关论文
共 31 条
  • [1] Banach S., 1922, Fundam. Math, V3, P133, DOI DOI 10.4064/FM-3-1-133-181
  • [2] Betiuk-Pilarska A., 2016, Pure Appl. Func. Anal, V1, P343
  • [3] STRONG AND WEAK-CONVERGENCE THEOREMS FOR LOCALLY NONEXPANSIVE-MAPPINGS IN BANACH-SPACES
    BRUCK, RE
    KIRK, WA
    REICH, S
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (02) : 151 - 155
  • [4] Butnariu D., 2006, Fixed Point Theory and its Applications, (Conference Proceedings, Guanajuato, Mexico, 2005), P11
  • [5] Censor Y., 2018, Pure Appl. Func. Anal, V3, P565
  • [6] Generic Existence and Approximation of Fixed Points for Nonexpansive Set-valued Maps
    de Blasi, Francesco S.
    Myjak, Jozef
    Reich, Simeon
    Zaslavski, Alexander J.
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2009, 17 (01) : 97 - 112
  • [7] DEBLASI FS, 1976, CR ACAD SCI A MATH, V283, P185
  • [8] Edelstein M., 1961, Proc. Am. Math. Soc, V12, P7
  • [9] Gabour M., 2014, INDIAN J MATH, V56, P25
  • [10] Gibali A., 2017, Pure Appl. Funct. Anal, V2, P243