Mitochondrial Dynamics and Insulin Secretion

被引:13
|
作者
Kabra, Uma D. [1 ]
Jastroch, Martin [2 ]
机构
[1] Parul Univ, Parul Inst Pharm, Dept Pharmaceut Chem, Vadodara 391760, India
[2] Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, Arrhenius Labs F3, SE-10691 Stockholm, Sweden
关键词
diabetes; mitochondrial dynamics; glucose-stimulated insulin secretion; pancreatic beta cell; fusion; fission; PANCREATIC BETA-CELLS; DOMINANT OPTIC ATROPHY; GLUCOSE-HOMEOSTASIS; DIABETES-MELLITUS; DRP1; RECRUITMENT; MITOFUSIN; FISSION; FUSION; GTPASE; OPA1;
D O I
10.3390/ijms241813782
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria are involved in the regulation of cellular energy metabolism, calcium homeostasis, and apoptosis. For mitochondrial quality control, dynamic processes, such as mitochondrial fission and fusion, are necessary to maintain shape and function. Disturbances of mitochondrial dynamics lead to dysfunctional mitochondria, which contribute to the development and progression of numerous diseases, including Type 2 Diabetes (T2D). Compelling evidence has been put forward that mitochondrial dynamics play a significant role in the metabolism-secretion coupling of pancreatic beta cells. The disruption of mitochondrial dynamics is linked to defects in energy production and increased apoptosis, ultimately impairing insulin secretion and beta cell death. This review provides an overview of molecular mechanisms controlling mitochondrial dynamics, their dysfunction in pancreatic beta cells, and pharmaceutical agents targeting mitochondrial dynamic proteins, such as mitochondrial division inhibitor-1 (mdivi-1), dynasore, P110, and 15-oxospiramilactone (S3).
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Mitochondrial damages and the regulation of insulin secretion
    Maechler, P.
    de Andrade, P. B. M.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2006, 34 : 824 - 827
  • [32] Linking mitochondrial dynamics to mitochondrial protein quality control
    Haroon, Suraiya
    Vermulst, Marc
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2016, 38 : 68 - 74
  • [33] Mitochondrial Biogenesis, Mitochondrial Dynamics, and Mitophagy in the Maturation of Cardiomyocytes
    Ding, Qianqian
    Qi, Yanxiang
    Tsang, Suk-Ying
    CELLS, 2021, 10 (09)
  • [34] When the Balance Tips: Dysregulation of Mitochondrial Dynamics as a Culprit in Disease
    Kyriakoudi, Styliana
    Drousiotou, Anthi
    Petrou, Petros P.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (09)
  • [35] Targeting protein interaction networks in mitochondrial dynamics for cancer therapy
    Yin, Chieh-Fan
    Chang, Yi-Wen
    Huang, Hsuan-Cheng
    Juan, Hsueh-Fen
    DRUG DISCOVERY TODAY, 2022, 27 (04) : 1077 - 1087
  • [36] Disturbance of mitochondrial dynamics in myocardium of broilers with pulmonary hypertension syndrome
    Zhang, W.
    Li, M.
    Ye, X.
    Jiang, M.
    Wu, X.
    Tang, Z.
    Hu, L.
    Zhang, H.
    Li, Y.
    Pan, J.
    BRITISH POULTRY SCIENCE, 2024, 65 (02) : 154 - 164
  • [37] Evolving Concepts of Mitochondrial Dynamics
    Dorn, Gerald W., II
    ANNUAL REVIEW OF PHYSIOLOGY, VOL 81, 2019, 81 : 1 - 17
  • [38] Mitochondrial dynamics in health and disease
    Yapa, Nethmi M. B.
    Lisnyak, Valerie
    Reljic, Boris
    Ryan, Michael T.
    FEBS LETTERS, 2021, 595 (08) : 1184 - 1204
  • [39] Human skeletal muscle mitochondrial dynamics in relation to oxidative capacity and insulin sensitivity
    Houzelle, Alexandre
    Jorgensen, Johanna A.
    Schaart, Gert
    Daemen, Sabine
    van Polanen, Nynke
    Fealy, Ciaran E.
    Hesselink, Matthijs K. C.
    Schrauwen, Patrick
    Hoeks, Joris
    DIABETOLOGIA, 2021, 64 (02) : 424 - 436
  • [40] Mitochondrial Dynamics and Metabolic Regulation
    Wai, Timothy
    Langer, Thomas
    TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2016, 27 (02) : 105 - 117