Solid electrolyte interphases in lithium metal batteries

被引:227
作者
Jagger, Ben [1 ]
Pasta, Mauro [1 ,2 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Faraday Inst, Quad One, Didcot OX11 0RA, England
基金
英国工程与自然科学研究理事会;
关键词
IMPEDANCE SPECTROSCOPY; MECHANICAL-PROPERTIES; LIQUID ELECTROLYTE; HIGH-ENERGY; LI; ANODES; INTERFACES; TRANSPORT; SURFACE; ELECTRODEPOSITION;
D O I
10.1016/j.joule.2023.08.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal batteries (LMBs) have recently received enormous in -terest as a higher energy density alternative to conventional lithium -ion batteries (LIBs). However, the commercialization of LMBs is currently impeded by poor cycle life due to inhomogeneous lithium deposition and active lithium loss. These are controlled by the solid electrolyte interphase (SEI) that forms on the anode surface, and there have been numerous reported strategies to produce SEIs with desired properties. However, these have not been sufficient to achieve the high cycling stabilities necessary for widespread LMB commercialization, requiring additional understanding of the SEI. In this perspective, we highlight recent progress in character-izing the SEI that forms in LMBs and outline the need to consider SEI nanostructure, transport, and mechanical properties together. We conclude by prescribing several key research fronts necessary for an accurate, systematic study of the SEI that will guide future electrolyte design and enable the development of safe and stable LMBs.
引用
收藏
页码:2228 / 2244
页数:17
相关论文
共 124 条
[1]   Interfaces in Solid Electrolyte Interphase: Implications for Lithium-Ion Batteries [J].
Ahmad, Zeeshan ;
Venturi, Victor ;
Hafiz, Hasnain ;
Viswanathan, Venkatasubramanian .
JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (21) :11301-11309
[2]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[3]   Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes [J].
Alvarado, Judith ;
Schroeder, Marshall A. ;
Pollard, Travis P. ;
Wang, Xuefeng ;
Lee, Jungwoo Z. ;
Zhang, Minghao ;
Wynn, Thomas ;
Ding, Michael ;
Borodin, Oleg ;
Meng, Ying Shirley ;
Xu, Kang .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (02) :780-794
[4]   EBSD-coupled indentation: nanoscale mechanics of lithium metal [J].
Aspinall, Jack ;
Armstrong, David E. J. ;
Pasta, Mauro .
MATERIALS TODAY ENERGY, 2022, 30
[5]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[6]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[7]   Ion Diffusivity through the Solid Electrolyte Interphase in Lithium-Ion Batteries [J].
Benitez, Laura ;
Seminario, Jorge M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (11) :E3159-E3170
[8]   Cross Talk between Transition Metal Cathode and Li Metal Anode: Unraveling Its Influence on the Deposition/Dissolution Behavior and Morphology of Lithium [J].
Betz, Johannes ;
Brinkmann, Jan-Paul ;
Noelle, Roman ;
Luerenbaum, Constantin ;
Kolek, Martin ;
Stan, Marian Cristian ;
Winter, Martin ;
Placke, Tobias .
ADVANCED ENERGY MATERIALS, 2019, 9 (21)
[9]   Influence of Temperature and Electrolyte Composition on the Performance of Lithium Metal Anodes [J].
Boroujeni, Sanaz Momeni ;
Fill, Alexander ;
Ridder, Alexander ;
Birke, Kai Peter .
BATTERIES-BASEL, 2021, 7 (04)
[10]   Correlating Kinetics to Cyclability Reveals Thermodynamic Origin of Lithium Anode Morphology in Liquid Electrolytes [J].
Boyle, David T. ;
Kim, Sang Cheol ;
Oyakhire, Solomon T. ;
Vila, Rafael A. ;
Huang, Zhuojun ;
Sayavong, Philaphon ;
Qin, Jian ;
Bao, Zhenan ;
Cui, Yi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (45) :20717-20725