Some γ-positive polynomials arising from enumerations of the pseudo Schröder paths

被引:0
作者
Yang, Lin [1 ]
Yang, Sheng-Liang [1 ]
机构
[1] Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
gamma-Positivity; Schroder numbers; Separable permutations; Lagrange inversion formula; Pseudo Schroder paths; Riordan array; SCHRODER NUMBERS; RIORDAN; CATALAN; MATRIX;
D O I
10.1016/j.disc.2023.113747
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a notion of pseudo Schroder paths, which are counted by the Schroder numbers. Using the symbolic method and the Lagrange inversion formula, we provide an alternative proof that the descent polynomials of separable permutations are gamma-positive. We also present several classes of gamma-positive polynomials via enumerating the pseudo Schroder paths according to several combinatorial statistics by applying Riordan arrays.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 32 条
[21]   Lagrange inversion: When and how [J].
Merlini, D. ;
Sprugnoli, R. ;
Verri, M. C. .
ACTA APPLICANDAE MATHEMATICAE, 2006, 94 (03) :233-249
[22]   On some alternative characterizations of Riordan arrays [J].
Merlini, D ;
Rogers, DG ;
Sprugnoli, R ;
Verri, MC .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (02) :301-320
[23]   THE RIORDAN GROUP [J].
SHAPIRO, LW ;
GETU, S ;
WOAN, WJ ;
WOODSON, LC .
DISCRETE APPLIED MATHEMATICS, 1991, 34 (1-3) :229-239
[24]  
Sloane N.J.A., 2023, On -Line Encyclopedia of integer sequences
[25]  
Song CW, 2005, ELECTRON J COMB, V12
[26]   RIORDAN ARRAYS AND COMBINATORIAL SUMS [J].
SPRUGNOLI, R .
DISCRETE MATHEMATICS, 1994, 132 (1-3) :267-290
[27]  
Stanley R. P., 1999, Enumerative Combinatorics, V2
[28]   Hipparchus, Plutarch, Schroder, and Hough [J].
Stanley, RP .
AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (04) :344-350
[29]   GENERATING TREES AND THE CATALAN AND SCHRODER NUMBERS [J].
WEST, J .
DISCRETE MATHEMATICS, 1995, 146 (1-3) :247-262
[30]   The m-Schroder paths and m-Schroder numbers [J].
Yang, Sheng-Liang ;
Jiang, Mei-yang .
DISCRETE MATHEMATICS, 2021, 344 (02)