Some γ-positive polynomials arising from enumerations of the pseudo Schröder paths

被引:0
作者
Yang, Lin [1 ]
Yang, Sheng-Liang [1 ]
机构
[1] Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
gamma-Positivity; Schroder numbers; Separable permutations; Lagrange inversion formula; Pseudo Schroder paths; Riordan array; SCHRODER NUMBERS; RIORDAN; CATALAN; MATRIX;
D O I
10.1016/j.disc.2023.113747
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a notion of pseudo Schroder paths, which are counted by the Schroder numbers. Using the symbolic method and the Lagrange inversion formula, we provide an alternative proof that the descent polynomials of separable permutations are gamma-positive. We also present several classes of gamma-positive polynomials via enumerating the pseudo Schroder paths according to several combinatorial statistics by applying Riordan arrays.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 32 条
[1]  
Athanasiadis C. A., 2018, SEM LOTHAR COMBIN, V77
[2]   On the halves of a Riordan array and their antecedents [J].
Barry, Paul .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 582 :114-137
[3]  
Barry P, 2013, J INTEGER SEQ, V16
[4]   SOME Q-ANALOGS OF THE SCHRODER NUMBERS ARISING FROM COMBINATORIAL STATISTICS ON LATTICE PATHS [J].
BONIN, J ;
SHAPIRO, L ;
SIMION, R .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 34 (01) :35-55
[5]  
Branden P., 2014, Handbook of Enumerative Combinatorics
[6]   The Fine numbers refined [J].
Cheon, Gi-Sang ;
Lee, Sang-Gu ;
Shapiro, Louis W. .
EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (01) :120-128
[7]   ON FLUCTUATIONS IN COIN-TOSSING [J].
CHUNG, KL ;
FELLER, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1949, 35 (10) :605-608
[8]  
Corteel S, 2016, DISCRETE MATH THEOR, V18
[9]   A survey of the Fine numbers [J].
Deutsch, E ;
Shapiro, L .
DISCRETE MATHEMATICS, 2001, 241 (1-3) :241-265
[10]   A bijective proof of the equation linking the Schroder numbers, large and small [J].
Deutsch, E .
DISCRETE MATHEMATICS, 2001, 241 (1-3) :235-240