Topological flat bands in rhombohedral tetralayer and multilayer graphene on hexagonal boron nitride moire superlattices

被引:13
|
作者
Park, Youngju [1 ]
Kim, Yeonju [1 ]
Chittari, Bheema Lingam [2 ]
Jung, Jeil [1 ,3 ]
机构
[1] Univ Seoul, Dept Phys, Seoul 02504, South Korea
[2] Indian Inst Sci Educ & Res Kolkata, Dept Phys Sci, Mohanpur 741246, West Bengal, India
[3] Univ Seoul, Dept Smart Cities, Seoul 02504, South Korea
基金
新加坡国家研究基金会;
关键词
MAGIC-ANGLE; UNCONVENTIONAL SUPERCONDUCTIVITY; CORRELATED STATES; DIRAC FERMIONS; MONOLAYER; INSULATOR; BEHAVIOR;
D O I
10.1103/PhysRevB.108.155406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show that rhombohedral four-layer graphene (4LG) nearly aligned with a hexagonal boron nitride (hBN) substrate often develops nearly flat isolated low-energy bands with nonzero valley Chern numbers. The bandwidths of the isolated flat bands are controllable through an electric field and twist angle, becoming as narrow as similar to 10 meV for interlayer potential differences between top and bottom layers of |Delta| approximate to 10-15 meV and theta similar to 0.5 degrees at the graphene and boron nitride interface. The local density of states analysis shows that the nearly flat band states are associated to the nondimer low-energy sublattice sites at the top or bottom graphene layers and their degree of localization in the moire superlattice is strongly gate tunable, exhibiting at times large delocalization despite the narrow bandwidth. We verified that the first valence band's valley Chern numbers C-V1(nu= +/- n) = +/- n, proportional to layer number for nLG/BN systems up to n = 8 rhombohedral multilayers.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Evidence of flat bands and correlated states in buckled graphene superlattices
    Mao, Jinhai
    Milovanovic, Slavisa P.
    Andelkovic, Misa
    Lai, Xinyuan
    Cao, Yang
    Watanabe, Kenji
    Taniguchi, Takashi
    Covaci, Lucian
    Peeters, Francois M.
    Geim, Andre K.
    Jiang, Yuhang
    Andrei, Eva Y.
    NATURE, 2020, 584 (7820) : 215 - +
  • [42] Influence of Hexagonal Boron Nitride on Electronic Structure of Graphene
    Liu, Jingran
    Luo, Chaobo
    Lu, Haolin
    Huang, Zhongkai
    Long, Guankui
    Peng, Xiangyang
    MOLECULES, 2022, 27 (12):
  • [43] van der Waals heterostructures combining graphene and hexagonal boron nitride
    Yankowitz, Matthew
    Ma, Qiong
    Jarillo-Herrero, Pablo
    LeRoy, Brian J.
    NATURE REVIEWS PHYSICS, 2019, 1 (02) : 112 - 125
  • [44] Band gaps in incommensurable graphene on hexagonal boron nitride
    Bokdam, Menno
    Amlaki, Taher
    Brocks, Geert
    Kelly, Paul J.
    PHYSICAL REVIEW B, 2014, 89 (20):
  • [45] Electronic structure of graphene nanoribbons on hexagonal boron nitride
    Gani, Yohanes S.
    Abergel, D. S. L.
    Rossi, Enrico
    PHYSICAL REVIEW B, 2018, 98 (20)
  • [46] Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride
    Chen Ling-Xiu
    Wang Hui-Shan
    Jiang Cheng-Xin
    Chen Chen
    Wang Hao-Min
    ACTA PHYSICA SINICA, 2019, 68 (16)
  • [47] Fractional Hofstadter States in Graphene on Hexagonal Boron Nitride
    DaSilva, Ashley M.
    Jung, Jeil
    MacDonald, Allan H.
    PHYSICAL REVIEW LETTERS, 2016, 117 (03)
  • [48] Graphene, hexagonal boron nitride, and their heterostructures: properties and applications
    Wang, Jingang
    Ma, Fengcai
    Sun, Mengtao
    RSC ADVANCES, 2017, 7 (27) : 16801 - 16822
  • [49] Dichotomy of Electron-Phonon Coupling in Graphene Moire Flat Bands
    Choi, Young Woo
    Choi, Hyoung Joon
    PHYSICAL REVIEW LETTERS, 2021, 127 (16)
  • [50] Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays
    Fukamachi, Satoru
    Solis-Fernandez, Pablo
    Kawahara, Kenji
    Tanaka, Daichi
    Otake, Toru
    Lin, Yung-Chang
    Suenaga, Kazu
    Ago, Hiroki
    NATURE ELECTRONICS, 2023, 6 (02) : 126 - +