Segmentation of underwater images using morphology for deep learning

被引:0
|
作者
Lee, Ji-Eun [1 ]
Lee, Chul-Won [1 ]
Park, Seok-Joon [1 ]
Shin, Jea-Beom [1 ]
Jung, Hyun-Gi [1 ]
机构
[1] Acoust Lab Co Ltd, 214-4-ho,35-dong,1,Gwanak Ro, Seoul 08826, South Korea
来源
关键词
Underwater exploration using side scan sonar and synthetic aperture sonar images; Deep learning input images; Morphology segmentation; Underwater target detection;
D O I
10.7776/ASK.2023.42.4.370
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In the underwater image, it is not clear to distinguish the shape of the target due to underwater noise and low resolution. In addition, as an input of deep learning, underwater images require pre-processing and segmentation must be preceded. Even after pre-processing, the target is not clear, and the performance of detection and identification by deep learning may not be high. Therefore, it is necessary to distinguish and clarify the target. In this study, the importance of target shadows is confirmed in underwater images, object detection and target area acquisition by shadows, and data containing only the shape of targets and shadows without underwater background are generated. We present the process of converting the shadow image into a 3-mode image in which the target is white, the shadow is black, and the background is gray. Through this, it is possible to provide an image that is clearly pre-processed and easily discriminated as an input of deep learning. In addition, if the image processing code using Open Source Computer Vision (OpenCV)Library was used for processing, the processing speed was also suitable for real-time processing.
引用
收藏
页码:370 / 376
页数:7
相关论文
共 50 条
  • [31] Segmentation of endoscopy images of anterior nasal cavity using deep learning
    Phoommanee, Nonpawith
    Andrews, Peter J.
    Leung, Terence S.
    COMPUTER-AIDED DIAGNOSIS, MEDICAL IMAGING 2024, 2024, 12927
  • [32] Deep Learning Semantic Segmentation of Feet Using Infrared Thermal Images
    Mejia-Zuluaga, Rafael
    Carlos Aguirre-Arango, Juan
    Collazos-Huertas, Diego
    Daza-Castillo, Jessica
    Valencia-Marulanda, Nestor
    Calderon-Marulanda, Mauricio
    Aguirre-Ospina, Oscar
    Alvarez-Meza, Andres
    Castellanos-Dominguez, German
    ADVANCES IN ARTIFICIAL INTELLIGENCE-IBERAMIA 2022, 2022, 13788 : 342 - 352
  • [33] Automated segmentation of endometrial cancer on MR images using deep learning
    Erlend Hodneland
    Julie A. Dybvik
    Kari S. Wagner-Larsen
    Veronika Šoltészová
    Antonella Z. Munthe-Kaas
    Kristine E. Fasmer
    Camilla Krakstad
    Arvid Lundervold
    Alexander S. Lundervold
    Øyvind Salvesen
    Bradley J. Erickson
    Ingfrid Haldorsen
    Scientific Reports, 11
  • [34] Automatic Spine Vertebra segmentation in CT images using Deep Learning
    Wu, Ping-Cheng
    Huang, Teng-Yi
    Juan, Chun-Jung
    2019 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS), 2019,
  • [35] Breast tissue segmentation in MR images using deep-learning
    Forghani, Y.
    Timotoe, R.
    Figueiredo, M.
    Marques, T.
    Batista, E.
    Cordoso, F.
    Cardoso, M. J.
    Santinha, J.
    Gouveia, P.
    EUROPEAN JOURNAL OF CANCER, 2024, 200 : 116 - 116
  • [36] Segmentation of Mammogram Images Using Deep Learning for Breast Cancer Detection
    Deb, Sagar Deep
    Jha, Rajib Kumar
    2022 2ND INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ROBOTICS (ICIPROB), 2022,
  • [37] Automated Segmentation of Microvessels in Intravascular OCT Images Using Deep Learning
    Lee, Juhwan
    Kim, Justin N. N.
    Gomez-Perez, Lia
    Gharaibeh, Yazan
    Motairek, Issam
    Pereira, Gabriel T. R.
    Zimin, Vladislav N. N.
    Dallan, Luis A. P.
    Hoori, Ammar
    Al-Kindi, Sadeer
    Guagliumi, Giulio
    Bezerra, Hiram G. G.
    Wilson, David L. L.
    BIOENGINEERING-BASEL, 2022, 9 (11):
  • [38] Automated Segmentation of Brain Tumor MRI Images Using Deep Learning
    Rajendran, Surendran
    Rajagopal, Suresh Kumar
    Thanarajan, Tamilvizhi
    Shankar, K.
    Kumar, Sachin
    Alsubaie, Najah M.
    Ishak, Mohamad Khairi
    Mostafa, Samih M.
    IEEE ACCESS, 2023, 11 : 64758 - 64768
  • [39] Anatomical Landmark Segmentation in Uterine Cervix Images Using Deep Learning
    Guo, Peng
    Xue, Zhiyun
    Long, L. Rodney
    Antani, Sameer K.
    MEDICAL IMAGING 2020: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2020, 11318
  • [40] Segmentation of Cell Nuclei in Fluorescence Microscopy Images Using Deep Learning
    Narotamo, Hemaxi
    Sanches, J. Miguel
    Silveira, Margarida
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT I, 2020, 11867 : 53 - 64