Wind Power Prediction using Multi-Task Gaussian Process Regression with Lagged Inputs

被引:2
作者
Avila, Francisco Jara [1 ,2 ,3 ]
Verstraeten, Timothy [1 ,2 ,3 ]
Vratsinis, Konstantinos [1 ,3 ]
Nowe, Ann [2 ]
Helsen, Jan [1 ,3 ]
机构
[1] Vrije Univ Brussel, OWI Lab, Pl Laan 2, B-1000 Brussels, Belgium
[2] Vrije Univ Brussel, Artificial Intelligence Lab, Pl Laan 2, B-1050 Brussels, Belgium
[3] Vrije Univ Brussel, Acoust & Vibrat Res Grp AVRG, Pl Laan 2, B-1050 Brussels, Belgium
来源
WAKE CONFERENCE 2023 | 2023年 / 2505卷
关键词
D O I
10.1088/1742-6596/2505/1/012035
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wind is a renewable energy source that has become more important in recent years. Wind turbines are equipped with a SCADA system, which allows for remote supervision of the wind farm. SCADA systems are customarily used to provide data averaged every 10 minutes. Nevertheless, recent literature suggests that more insights could be extracted with a higher granularity of data. In this work, a naive methodology based on Multi-Task Gaussian Process Regression is presented, in order to show how spatiotemporal modeling benefits power estimation. Using sparsity properties a model for possible power prediction is proposed. The model proposed performs better than the power curves provided by the manufacturer.
引用
收藏
页数:11
相关论文
共 30 条
  • [1] Abramowitz M., 1965, HDB MATH FUNCTIONS
  • [2] Alvarez M., 2009, Artificial Intelligence and Statistics, P9
  • [3] Beck D., 2014, WMT ACL
  • [4] Bonilla EV., 2007, ADV NEURAL INFORM PR
  • [5] A systematic literature review of machine learning methods applied to predictive maintenance
    Carvalho, Thyago P.
    Soares, Fabrizzio A. A. M. N.
    Vita, Roberto
    Francisco, Robert da P.
    Basto, Joao P.
    Alcala, Symone G. S.
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2019, 137
  • [6] Chai K.M.A., 2010, Multi-task learning with gaussian processes
  • [7] Domingos P., 2020, arXiv
  • [8] Fan Jianqing., 1996, LOCAL POLYNOMIAL MOD, V66
  • [9] Modified Approach of Manufacturer's Power Curve Based on Improved Bins and K-Means plus plus Clustering
    Fang, Yuan
    Wang, Yibo
    Liu, Chuang
    Cai, Guowei
    [J]. SENSORS, 2022, 22 (21)
  • [10] Gardner JR, 2018, ADV NEUR IN, V31