机构:
Nankai Univ, Coll Comp Sci, Tianjin, 300350, Peoples R China
User Profile Res & Dev Dept JD, Beijing 100000, Peoples R ChinaNankai Univ, Coll Comp Sci, Tianjin, 300350, Peoples R China
Li, Na
[1
,2
]
Liu, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Coll Artificial Intelligence, Tianjin 300350, Peoples R ChinaNankai Univ, Coll Comp Sci, Tianjin, 300350, Peoples R China
Liu, Jie
[3
]
He, Zhicheng
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Coll Comp Sci, Tianjin, 300350, Peoples R ChinaNankai Univ, Coll Comp Sci, Tianjin, 300350, Peoples R China
He, Zhicheng
[1
]
Zhang, Chunhai
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Coll Artificial Intelligence, Tianjin 300350, Peoples R ChinaNankai Univ, Coll Comp Sci, Tianjin, 300350, Peoples R China
Zhang, Chunhai
[3
]
Xie, Jiaying
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Coll Artificial Intelligence, Tianjin 300350, Peoples R ChinaNankai Univ, Coll Comp Sci, Tianjin, 300350, Peoples R China
Xie, Jiaying
[3
]
机构:
[1] Nankai Univ, Coll Comp Sci, Tianjin, 300350, Peoples R China
[2] User Profile Res & Dev Dept JD, Beijing 100000, Peoples R China
[3] Nankai Univ, Coll Artificial Intelligence, Tianjin 300350, Peoples R China
We study the problem of Network Embedding (NE) for content-rich networks. NE models aim to learn efficient low-dimensional dense vectors for network vertices which are crucial to many network analysis tasks. The core problem of content-rich network embedding is to learn and integrate the semantic information conveyed by network structure and node content. In this paper, we propose a general end-to-end model, Dual GEnerative Network Embedding (DGENE), to leverage the complementary information of network structure and content. In this model, each vertex is regarded as an object with two modalities: node identity and textual content. Then we formulate two dual generation tasks, Node Identification (NI) which recognizes nodes' identities given their contents, and Content Generation (CG) which generates textual contents given the nodes' identities. We develop specific Content2Node and Node2Content models for the two tasks. Under the DGENE framework, the two dual models are learned by sharing and integrating intermediate layers. Extensive experimental results show that our model yields a significant performance gain compared to the state-of-the-art NE methods. Moreover, our model has an interesting and useful byproduct, that is, a component of our model can generate texts and nodes, which is potentially useful for many tasks.
机构:
Peking Univ, Key Lab Machine Percept, Minist Educ, Beijing 100871, Peoples R ChinaPeking Univ, Key Lab Machine Percept, Minist Educ, Beijing 100871, Peoples R China
Song, Guojie
Zhang, Yizhou
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Calif, Dept Comp Sci, Viterbi Sch Engn, Los Angeles, CA 90089 USAPeking Univ, Key Lab Machine Percept, Minist Educ, Beijing 100871, Peoples R China
Zhang, Yizhou
Xu, Lingjun
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R ChinaPeking Univ, Key Lab Machine Percept, Minist Educ, Beijing 100871, Peoples R China
Xu, Lingjun
Lu, Haibing
论文数: 0引用数: 0
h-index: 0
机构:
Santa Clara Univ, Dept Informat Syst & Analyt, Santa Clara, CA 95053 USAPeking Univ, Key Lab Machine Percept, Minist Educ, Beijing 100871, Peoples R China
机构:
Sun Yat Sen Univ, Higher Educ Mega Ctr, Sch Data & Comp Sci, Guangzhou, Peoples R ChinaSun Yat Sen Univ, Higher Educ Mega Ctr, Sch Data & Comp Sci, Guangzhou, Peoples R China
Huang, Jie
Chen, Chuan
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Higher Educ Mega Ctr, Sch Data & Comp Sci, Guangzhou, Peoples R ChinaSun Yat Sen Univ, Higher Educ Mega Ctr, Sch Data & Comp Sci, Guangzhou, Peoples R China
Chen, Chuan
Ye, Fanghua
论文数: 0引用数: 0
h-index: 0
机构:
UCL, Dept Comp Sci, Gower St, London, EnglandSun Yat Sen Univ, Higher Educ Mega Ctr, Sch Data & Comp Sci, Guangzhou, Peoples R China
Ye, Fanghua
Hu, Weibo
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Higher Educ Mega Ctr, Sch Data & Comp Sci, Guangzhou, Peoples R ChinaSun Yat Sen Univ, Higher Educ Mega Ctr, Sch Data & Comp Sci, Guangzhou, Peoples R China
Hu, Weibo
Zheng, Zibin
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Higher Educ Mega Ctr, Sch Data & Comp Sci, Guangzhou, Peoples R ChinaSun Yat Sen Univ, Higher Educ Mega Ctr, Sch Data & Comp Sci, Guangzhou, Peoples R China
机构:
Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
Sun Yat Sen Univ, Natl Engn Res Ctr Digital Life, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
Zhang, Ziyang
Chen, Chuan
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
Sun Yat Sen Univ, Natl Engn Res Ctr Digital Life, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
Chen, Chuan
Chang, Yaomin
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
Sun Yat Sen Univ, Natl Engn Res Ctr Digital Life, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
Chang, Yaomin
Hu, Weibo
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
Sun Yat Sen Univ, Natl Engn Res Ctr Digital Life, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
Hu, Weibo
Xing, Xingxing
论文数: 0引用数: 0
h-index: 0
机构:
NetEase Inc, Guangzhou 510665, Peoples R ChinaSun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
Xing, Xingxing
Zhou, Yuren
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
Sun Yat Sen Univ, Natl Engn Res Ctr Digital Life, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
Zhou, Yuren
Zheng, Zibin
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
Sun Yat Sen Univ, Natl Engn Res Ctr Digital Life, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China