Electro-thermal actuation in percolative ferroelectric polymer nanocomposites

被引:33
|
作者
Liu, Yang [1 ,2 ]
Zhou, Yao [2 ]
Qin, Hancheng [3 ]
Yang, Tiannan [2 ]
Chen, Xin [2 ]
Li, Li [2 ]
Han, Zhubing [2 ]
Wang, Ke [4 ]
Zhang, Bing [3 ]
Lu, Wenchang [3 ]
Chen, Long-Qing [2 ]
Bernholc, J. [3 ]
Wang, Qing [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan, Peoples R China
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[3] North Carolina State Univ, Dept Phys, Raleigh, NC USA
[4] Penn State Univ, Mat Res Inst, University Pk, PA USA
基金
中国国家自然科学基金;
关键词
GIANT PIEZOELECTRICITY; THIN-FILMS; PHASE; BEHAVIOR; STABILITY; CERAMICS; STRAIN;
D O I
10.1038/s41563-023-01564-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Piezoelectric actuators play a critical role in precision positioning devices; however, materials with high actuation strain and mechanical energy density are rare. Here a composite of poly(vinylidene fluoride) and TiO2 demonstrates superior performance in these metrics, with the ferroelectric transition driven by Joule heating. The interconversion between electrical and mechanical energies is pivotal to ferroelectrics to enable their applications in transducers, actuators and sensors. Ferroelectric polymers exhibit a giant electric-field-induced strain (>4.0%), markedly exceeding the actuation strain (<= 1.7%) of piezoelectric ceramics and crystals. However, their normalized elastic energy densities remain orders of magnitude smaller than those of piezoelectric ceramics and crystals, severely limiting their practical applications in soft actuators. Here we report the use of electro-thermally induced ferroelectric phase transition in percolative ferroelectric polymer nanocomposites to achieve high strain performance in electric-field-driven actuation materials. We demonstrate a strain of over 8% and an output mechanical energy density of 11.3 J cm(-3) at an electric field of 40 MV m(-1) in the composite, outperforming the benchmark relaxor single-crystal ferroelectrics. This approach overcomes the trade-off between mechanical modulus and electro-strains in conventional piezoelectric polymer composites and opens up an avenue for high-performance ferroelectric actuators.
引用
收藏
页码:873 / +
页数:20
相关论文
共 50 条
  • [31] Electro-thermal model of an optical transmitter
    Karray, M
    Desgreys, P
    Charlot, JJ
    2003 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS, 2003, : 751 - 753
  • [32] The Electro-Thermal Antimicrobial Carbon Surface
    Heo, Ki Joon
    Lee, Yeawan
    Kim, Sang Bok
    Kim, Yong-Jin
    Han, Bangwoo
    Kim, Hak-Joon
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2023, 59 (01) : 473 - 478
  • [33] Electro-thermal resistance of GaAs interconnects
    Wartenberg, SA
    Zhao, G
    Liu, QH
    JOURNAL OF ELECTRONIC MATERIALS, 2005, 34 (03) : 294 - 298
  • [34] Electro-thermal resistance of GaAs interconnects
    Scott A. Wartenberg
    Gang Zhao
    Qing H. Liu
    Journal of Electronic Materials, 2005, 34 : 294 - 298
  • [35] Electro-thermal Modeling of TCSAW Filter
    Akstaller, Wolfgang
    Kuypers, Jan
    Kokkonen, Kimmo
    Weigel, Robert
    Hagelauer, Amelie
    2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2018,
  • [36] Compact electro-thermal models of interconnects
    Codecasa, Lorenzo
    MICROELECTRONICS JOURNAL, 2014, 45 (12) : 1777 - 1785
  • [37] Preliminary Characterization of An Electro-Thermal Converter
    Janicki, Marcin
    Jankowski, Mariusz
    Szenner, Michal
    2023 30TH INTERNATIONAL CONFERENCE ON MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM, MIXDES, 2023, : 160 - 163
  • [38] Analysis of the Fuses' Electro-Thermal Field
    Plesca, A.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2010, (08) : 85 - 88
  • [39] An electro-thermal paraffin bath.
    Steen, RH
    BRITISH MEDICAL JOURNAL, 1901, 1901 : 1733 - 1734
  • [40] IGBT Electro-thermal Simulation Under Dynamic Avalanche Condition Considering Distribution of Electro-thermal Stress on Chip
    Ma T.
    Luo Y.
    Jia Y.
    Li X.
    Shi Z.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41 (20): : 7068 - 7078