Oat grains classification using deep learning

被引:0
|
作者
Patricio, Diego Inacio [1 ]
Signor, Carlos Re [2 ]
Langaro, Nadia Canali [2 ]
Rieder, Rafael [2 ]
机构
[1] Embrapa Trigo, Empresa Brasileira Pesquisa Agr Unidade, Brasilia, DF, Brazil
[2] Univ Passo Fundo UPF, Passo Fundo, RS, Brazil
来源
关键词
Classification; computer vision; deep learning; oat; COMPUTER VISION; AGRICULTURE; SYSTEM; RICE;
D O I
10.5335/rbca.v15i1.13653
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background: Based on their nutritional benefits, oat is classified as a cereal of great importance for both human and animal feeding. Throughout the production process, species and variety identification are vital for agricultural systems. The present work establishes SeedFlow, a method for image acquisition, processing, and classification of oat grains using deep learning techniques. We apply these techniques to the identification of the grains from the different oat species Avena sativa and Avena strigosa and to classify grains as varieties of Avena sativa, such as UPFA Ouro, UPFA Fuerza, and UPFA Gauderia. Results: To achieve this proposition, we executed our solution considering six different deep learning architectures to evaluate which model presents the best performance. This approach attained an accuracy of 99.7% for oat species identification and 89.7% for oat varieties classification using DenseNet architecture. Conclusions: As a result, this tool can provide high value for practical quality control applications, and it is feasible to use in pre-screening tests, laboratory analysis pipelines, or computer support tools geared toward breeding programs or intellectual property assessment.
引用
收藏
页码:48 / 58
页数:11
相关论文
共 50 条
  • [1] Pollen Grains Classification with a Deep Learning System GPU-Trained
    Ruiz-Varela, J. M.
    Ortega-Cisneros, S.
    Moreno-Villalobos, P.
    Rivera, Jorge
    Rivera-Acosta, Miguel
    IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (01) : 22 - 31
  • [2] Race classification using deep learning
    Khan, Khalil
    Khan, Rehan Ullah
    Ali, Jehad
    Uddin, Irfan
    Khan, Sahib
    Roh, Byeong-Hee
    Computers, Materials and Continua, 2021, 68 (03): : 3483 - 3498
  • [3] Classification of Legislations using Deep Learning
    Pudaruth, Sameerchand
    Soyjaudah, Sunjiv
    Gunputh, Rajendra
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2021, 18 (05) : 651 - 662
  • [4] MALWARE CLASSIFICATION USING DEEP LEARNING
    Lo, Cheng-Hsiang
    Liu, Ta-Che
    Liu, I-Hsien
    Li, Jung-Shian
    Liu, Chuan-Gang
    Li, Chu-Fen
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 126 - 129
  • [5] Signal Classification Using Deep Learning
    Nishizaki, Hiromitsu
    Makino, Koji
    2019 IEEE INTERNATIONAL CONFERENCE ON SENSORS AND NANOTECHNOLOGY (SN), 2019, : 81 - 84
  • [6] Using Deep Learning for Trajectory Classification
    de Freitas, Nicksson C. A.
    Coelho da Silva, Ticiana L.
    Fernandes de Macedo, Jose Antonio
    Melo Junior, Leopoldo
    Cordeiro, Matheus Gomes
    ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, 2021, : 664 - 671
  • [7] Acoustic Classification using Deep Learning
    Aslam, Muhammad Ahsan
    Sarwar, Muhammad Umer
    Hanif, Muhammad Kashif
    Talib, Ramzan
    Khalid, Usama
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (08) : 153 - 159
  • [8] Melanoma Classification Using Deep Learning
    Mousa, Yehia
    Taha, Radwa
    Kaur, Ranpreet
    Afifi, Shereen
    IMAGE AND VIDEO TECHNOLOGY, PSIVT 2023, 2024, 14403 : 259 - 272
  • [9] Race Classification Using Deep Learning
    Khan, Khalil
    Khan, Rehan Ullah
    Ali, Jehad
    Uddin, Irfan
    Khan, Sahib
    Roh, Byeong-hee
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (03): : 3483 - 3498
  • [10] Classification of Leucocytes Using Deep Learning
    Suganthi, N.
    Preethi, V
    Swetha, K.
    Kannan, K.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (11): : 116 - 120