Spectral radius conditions for fractional [a, b]-covered graphs

被引:2
|
作者
Wang, Junjie [1 ]
Zheng, Jiaxin [1 ]
Chen, Yonglei [2 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
[2] Lanzhou Jiaotong Univ, Inst Appl Math, Lanzhou 730070, Peoples R China
关键词
Spectral radius; Fractional[ab]-factor; Fractional[ab]-covered graph; SIGNLESS LAPLACIAN; SUFFICIENT CONDITION; EVEN;
D O I
10.1016/j.laa.2023.02.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is called fractional [a, b]-covered if for every edge e of G there is a fractional [a, b]-factor with the indicator function h such that h(e) = 1. In this paper, we provide a tight spectral radius condition for graphs being fractional [a, b]-covered. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [31] The spectral radius of irregular graphs
    Shi, Lingsheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (1-2) : 189 - 196
  • [32] On the spectral radius of bipartite graphs
    Fan, Dandan
    Wang, Guoping
    Zao, Yuying
    UTILITAS MATHEMATICA, 2019, 113 : 149 - 158
  • [33] Maximal graphs and graphs with maximal spectral radius
    Olesky, DD
    Roy, A
    van den Driessche, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 346 (1-3) : 109 - 130
  • [34] Spectral characterizations of graphs with small spectral radius
    Wang, JianFeng
    Belardo, Francesco
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (10) : 2408 - 2416
  • [35] On sufficient spectral radius conditions for hamiltonicity
    Zhou, Qiannan
    Broersma, Hajo
    Wang, Ligong
    Lu, Yong
    DISCRETE APPLIED MATHEMATICS, 2021, 296 (296) : 26 - 38
  • [36] Maximum degree and spectral radius of graphs in terms of size
    Wang, Zhiwen
    Guo, Ji-Ming
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (01) : 213 - 224
  • [37] MAXIMA OF THE SIGNLESS LAPLACIAN SPECTRAL RADIUS FOR PLANAR GRAPHS
    Yu, Guanglong
    Wang, Jianyong
    Guo, Shu-Guang
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 795 - 811
  • [38] On the spectral radius of quasi-k-cyclic graphs
    Geng, Xianya
    Li, Shuchao
    Simic, Slobodan K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (8-10) : 1561 - 1572
  • [39] The signless Laplacian spectral radius of graphs with given diameter
    Feng LiHua
    Yu GuiHai
    UTILITAS MATHEMATICA, 2010, 83 : 265 - 276
  • [40] Spectral Radius of Hamiltonian Planar Graphs and Outerplanar Graphs
    周建
    林翠琴
    胡冠章
    TsinghuaScienceandTechnology, 2001, (04) : 350 - 354