Spectral radius conditions for fractional [a, b]-covered graphs

被引:2
|
作者
Wang, Junjie [1 ]
Zheng, Jiaxin [1 ]
Chen, Yonglei [2 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
[2] Lanzhou Jiaotong Univ, Inst Appl Math, Lanzhou 730070, Peoples R China
关键词
Spectral radius; Fractional[ab]-factor; Fractional[ab]-covered graph; SIGNLESS LAPLACIAN; SUFFICIENT CONDITION; EVEN;
D O I
10.1016/j.laa.2023.02.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is called fractional [a, b]-covered if for every edge e of G there is a fractional [a, b]-factor with the indicator function h such that h(e) = 1. In this paper, we provide a tight spectral radius condition for graphs being fractional [a, b]-covered. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [21] Spectral radius of bipartite graphs
    Liu, Chia-an
    Weng, Chih-wen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 474 : 30 - 43
  • [22] On the spectral radius of bipartite graphs
    Fan, Dandan
    Wang, Guoping
    Zao, Yuying
    UTILITAS MATHEMATICA, 2020, 114 : 3 - 12
  • [23] Walks and the spectral radius of graphs
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (01) : 257 - 268
  • [24] On the Laplacian Spectral Radius of Graphs
    Xu, Guanghui
    Xu, Changqing
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 164 - 167
  • [25] Spectral radius and matchings in graphs
    Suil, O.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 614 : 316 - 324
  • [26] Toughness and spectral radius in graphs
    Chen, Yuanyuan
    Fan, Dandan
    Lin, Huiqiu
    DISCRETE MATHEMATICS, 2024, 347 (12)
  • [27] SPECTRAL RADIUS AND HAMILTONICITY OF GRAPHS
    Yu, Guidong
    Fang, Yi
    Fan, Yizheng
    Cai, Gaixiang
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (04) : 951 - 974
  • [28] A conjecture on the spectral radius of graphs
    Sun, Shaowei
    Das, Kinkar Chandra
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 588 (588) : 74 - 80
  • [29] Spectral radius and Hamiltonian graphs
    Lu, Mei
    Liu, Huiqing
    Tian, Feng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (07) : 1670 - 1674
  • [30] On sufficient spectral radius conditions for hamiltonicity of k-connected graphs
    Zhou, Qiannan
    Broersma, Hajo
    Wang, Ligong
    Lu, Yong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 604 : 129 - 145