Spectral radius conditions for fractional [a, b]-covered graphs

被引:2
作者
Wang, Junjie [1 ]
Zheng, Jiaxin [1 ]
Chen, Yonglei [2 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
[2] Lanzhou Jiaotong Univ, Inst Appl Math, Lanzhou 730070, Peoples R China
关键词
Spectral radius; Fractional[ab]-factor; Fractional[ab]-covered graph; SIGNLESS LAPLACIAN; SUFFICIENT CONDITION; EVEN;
D O I
10.1016/j.laa.2023.02.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is called fractional [a, b]-covered if for every edge e of G there is a fractional [a, b]-factor with the indicator function h such that h(e) = 1. In this paper, we provide a tight spectral radius condition for graphs being fractional [a, b]-covered. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 25 条
[1]   Sharp lower bounds on the fractional matching number [J].
Behrend, Roger E. ;
Suil, O. ;
West, Douglas B. .
DISCRETE APPLIED MATHEMATICS, 2015, 186 :272-274
[2]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[3]   TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, III [J].
Cvetkovic, Dragos ;
Simic, Slobodan K. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2010, 4 (01) :156-166
[4]   TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, I [J].
Cvetkovic, Dragos ;
Simic, Slobodan K. .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99) :19-33
[5]   Towards a spectral theory of graphs based on the signless Laplacian, II [J].
Cvetkovic, Dragos ;
Simic, Slobodan K. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) :2257-2272
[6]   ON THREE CONJECTURES INVOLVING THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS [J].
Feng, Lihua ;
Yu, Guihai .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99) :35-38
[7]  
Godsil C., 2001, Algebraic Graph Theory, V207
[8]   EDGE-CONNECTIVITY AND EDGES OF EVEN FACTORS OF GRAPHS [J].
Haghparast, Nastaran ;
Kiani, Dariush .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (02) :357-364
[9]   Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees [J].
Hong, Y ;
Zhang, XD .
DISCRETE MATHEMATICS, 2005, 296 (2-3) :187-197
[10]  
HONG Y, 1988, LINEAR ALGEBRA APPL, V108, P135