3D printing of chitooligosaccharide-polyethylene glycol diacrylate hydrogel inks for bone tissue regeneration

被引:17
|
作者
Rajabi, Mina [1 ]
Cabral, Jaydee D. [2 ]
Saunderson, Sarah [2 ]
Ali, M. Azam [1 ,3 ]
机构
[1] Univ Otago, Sir John Walsh Res Inst, Fac Dent, Ctr Bioengn & Nanomed,Div Hlth Sci, Dunedin, New Zealand
[2] Univ Otago, Dept Microbiol & Immunol, Dunedin, New Zealand
[3] Univ Otago, Sir John Walsh Res Inst, Fac Dent, Ctr Bioengn & Nanomed,Div Hlth Sci, POB 56, Dunedin 9054, New Zealand
关键词
3D printing; bone regeneration; Chitooligosaccharide; hydrogel; mesenchymal stem cells; polyethylene glycol diacrylate; OSTEOGENIC DIFFERENTIATION; ANTIMICROBIAL ACTIVITY; MECHANICAL-PROPERTIES; STEM-CELLS; CHITOSAN; SCAFFOLDS; MINERALIZATION; HYDROXYAPATITE; DEGRADATION; FABRICATION;
D O I
10.1002/jbm.a.37548
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
To date, lack of functional hydrogel inks has limited 3D printing applications in tissue engineering. This study developed a series of photocurable hydrogel inks based on chitooligosaccharide (COS)-polyethylene glycol diacrylate (PEGDA) for extrusion-based 3D printing of bone tissue scaffolds. The scaffolds were prepared by aza-Michael addition of COS and PEGDA followed by photopolymerisation of unreacted PEGDA. The hydrogel inks showed sufficient shear thinning properties required for extrusion 3D printing. The printed scaffolds exhibited excellent shape fidelity and fine microstructure with a resolution of 250 mu m. By increasing the COS content, the swelling ratio of the scaffolds decreased, while the compressive strength increased. 3D printed COS-PEGDA scaffolds showed high viability of human bone mesenchymal stem cells in vitro. In addition, scaffolds containing 2 wt% COS showed significantly higher alkaline phosphatase activity, calcium deposition, and bioactivity in simulated body fluid compared to the control (PEGDA). Altogether, 3D printed COS-PEGDA scaffolds represent promising candidates for bone tissue regeneration.
引用
收藏
页码:1468 / 1481
页数:14
相关论文
共 50 条
  • [21] Digital light processing 3D printing of barium titanate/1,6-ethylene glycol diacrylate/polyethylene glycol (400) diacrylate nanocomposites
    Chen, Cheng
    Wang, Xi
    Wang, Yan
    Gu, Hongxi
    Zhao, Weixing
    Zhang, Wenxiong
    Sewvandi, Galhenage Asha
    Wang, Bo
    Ma, Chunrui
    Liu, Ming
    Hu, Dengwei
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2023, 6 (01)
  • [22] 3D printing of bone tissue engineering scaffolds
    Wang, Chong
    Huang, Wei
    Zhou, Yu
    He, Libing
    He, Zhi
    Chen, Ziling
    He, Xiao
    Tian, Shuo
    Liao, Jiaming
    Lu, Bingheng
    Wei, Yen
    Wang, Min
    BIOACTIVE MATERIALS, 2020, 5 (01) : 82 - 91
  • [23] Materials and scaffolds in medical 3D printing and bioprinting in the context of bone regeneration
    Heller, M.
    Bauer, H. -K.
    Goetze, E.
    Gielisch, M.
    Ozbolat, I. T.
    Moncal, K. K.
    Rizk, E.
    Seitz, H.
    Gelinsky, M.
    Schrder, H. C.
    Wang, X. H.
    Mueller, W. E. G.
    Al-Nawas, B.
    INTERNATIONAL JOURNAL OF COMPUTERIZED DENTISTRY, 2016, 19 (04) : 301 - 321
  • [24] 3D Printing for Bone-Cartilage Interface Regeneration
    Xu, Jialian
    Ji, Jindou
    Jiao, Juyang
    Zheng, Liangjun
    Hong, Qimin
    Tang, Haozheng
    Zhang, Shutao
    Qu, Xinhua
    Yue, Bing
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [25] 3D printing of biomaterials for vascularized and innervated tissue regeneration
    Zhang, Hongjian
    Wu, Chengtie
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (03) : 1 - 21
  • [26] 3D Printing for Soft Tissue Regeneration and Applications in Medicine
    Pantermehl, Sven
    Emmert, Steffen
    Foth, Aenne
    Grabow, Niels
    Alkildani, Said
    Bader, Rainer
    Barbeck, Mike
    Jung, Ole
    BIOMEDICINES, 2021, 9 (04)
  • [27] Enhanced gelatin methacryloyl nanohydroxyapatite hydrogel for high-fidelity 3D printing of bone tissue engineering scaffolds
    Naolou, Toufik
    Schadzek, Nadine
    Hornbostel, Jan Mathis
    Pepelanova, Iliyana
    Frommer, Miriam
    Loetz, Franziska
    Sauheitl, Leopold
    Dultz, Stefan
    Felde, Vincent J. M. N. L.
    Myklebost, Ola
    Lee-Thedieck, Cornelia
    BIOFABRICATION, 2025, 17 (02)
  • [28] The Applications of 3D Printing for Craniofacial Tissue Engineering
    Tao, Owen
    Kort-Mascort, Jacqueline
    Lin, Yi
    Pham, Hieu M.
    Charbonneau, Andre M.
    ElKashty, Osama A.
    Kinsella, Joseph M.
    Tran, Simon D.
    MICROMACHINES, 2019, 10 (07)
  • [29] Advancements in 3D-4D printing of hydroxyapatite composites for bone tissue engineering
    Chopra, Vianni
    Fuentes-Velasco, Valeria
    Nacif-Lopez, Samyr R.
    Melendez-Malpicca, Juliette
    Mendez-Hernandez, Ana S.
    Ramos-Mendez-Iris, Luis F.
    Arroyo-Jimenez, Denev A.
    Reyes-Segura, Diana G.
    Gonzalez-Y-Mendoza, Pamela
    Sanchez-Hernandez, K. Aline
    Spinola-Corona, Estefania
    Vazquez-del-Mercado-Pardino, Jorge A.
    Chauhan, Gaurav
    CERAMICS INTERNATIONAL, 2024, 50 (20) : 38819 - 38840
  • [30] Microstructures and properties of polycaprolactone/tricalcium phosphate scaffolds containing polyethylene glycol fabricated by 3D printing
    Liu, Kang
    Sun, Jinping
    Zhu, Qiang
    Jin, Xin
    Zhang, Zhuojun
    Zhao, Zeyu
    Chen, Gang
    Wang, Chuanjie
    Jiang, Hongjiang
    Zhang, Peng
    CERAMICS INTERNATIONAL, 2022, 48 (16) : 24032 - 24043