Sparse polynomial prediction

被引:1
|
作者
Maruri-Aguilar, Hugo [1 ]
Wynn, Henry [2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
[2] London Sch Econ, Dept Stat, Houghton St, London WC2A 2AE, England
关键词
Smolyak grids; Sparse designs; Inclusion-exclusion; Betti numbers; INTERPOLATION;
D O I
10.1007/s00362-023-01439-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In numerical analysis, sparse grids are point configurations used in stochastic finite element approximation, numerical integration and interpolation. This paper is concerned with the construction of polynomial interpolator models in sparse grids. Our proposal stems from the fact that a sparse grid is an echelon design with a hierarchical structure that identifies a single model. We then formulate the model and show that it can be written using inclusion-exclusion formul AE. At this point, we deploy efficient methodologies from the algebraic literature that can simplify considerably the computations. The methodology uses Betti numbers to reduce the number of terms in the inclusion-exclusion while achieving the same result as with exhaustive formul AE.
引用
收藏
页码:1233 / 1249
页数:17
相关论文
共 50 条
  • [31] PRIME VALUES OF A SPARSE POLYNOMIAL SEQUENCE
    Li, Xiannan
    DUKE MATHEMATICAL JOURNAL, 2022, 171 (01) : 101 - 208
  • [32] Sparse polynomial division using a heap
    Monagan, Michael
    Pearce, Roman
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (07) : 807 - 822
  • [33] On the parallel evaluation of a sparse polynomial at a point
    Bini, DA
    Fiorentino, G
    NUMERICAL ALGORITHMS, 1999, 20 (04) : 323 - 329
  • [34] Sparse Polynomial Learning and Graph Sketching
    Kocaoglu, Murat
    Shanmugam, Karthikeyan
    Dimakis, Alexandras G.
    Klivans, Adam
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [35] Sparse polynomial interpolation in Chebyshev bases
    Potts, Daniel
    Tasche, Manfred
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 441 : 61 - 87
  • [36] Sparse DOA estimation with polynomial rooting
    Xenaki, Angeliki
    Gerstoft, Peter
    Fernandez-Grande, Efren
    2015 3RD INTERNATIONAL WORKSHOP ON COMPRESSED SENSING THEORY AND ITS APPLICATION TO RADAR, SONAR, AND REMOTE SENSING (COSERA), 2015, : 104 - 108
  • [37] Sparse polynomial interpolation based on diversification
    Huang, Qiao-Long
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (06) : 1147 - 1162
  • [38] Global residues for sparse polynomial systems
    Soprunov, Ivan
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (02) : 383 - 392
  • [39] Sparse polynomial interpolation: sparse recovery, super-resolution, or Prony?
    Josz, Cedric
    Lasserre, Jean Bernard
    Mourrain, Bernard
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (03) : 1401 - 1437
  • [40] Sparse polynomial interpolation: sparse recovery, super-resolution, or Prony?
    Cédric Josz
    Jean Bernard Lasserre
    Bernard Mourrain
    Advances in Computational Mathematics, 2019, 45 : 1401 - 1437