In silico identification and molecular dynamic simulations of derivatives of 6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide against main protease 3CLpro of SARS-CoV-2 viral infection

被引:8
|
作者
Sinha, Prashasti [1 ]
Yadav, Anil Kumar [1 ]
机构
[1] Babasaheb Bhimrao Ambedkar Univ, Sch Phys & Decis Sci, Dept Phys, Lucknow 226025, Uttar Pradesh, India
关键词
Molecular docking; Boceprevir; Main protease 3CL(pro); Molecular dynamic; INHIBITORS;
D O I
10.1007/s00894-023-05535-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ContextThe unavailability of target-specific antiviral drugs for SARS-CoV-2 viral infection kindled the motivation to virtually design derivatives of 6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide as potential antiviral inhibitors against the concerned virus. The molecular docking and molecular dynamic results revealed that the reported derivatives have a potential to act as antiviral drug against SARS-CoV-2. The reported hit compounds can be considered for in vitro and in vivo analyses.MethodsFragment-based drug designing was used to model the derivatives. Furthermore, DFT simulations were carried out using B3LYP/6-311G** basis set. Docking simulations were performed by using a combination of empirical free energy force field with a Lamarckian genetic algorithm under AutoDock 4.2. By the application of AMBER14 force field and SPCE water model, molecular dynamic simulations and MM-PBSA were calculated for 100 ns.
引用
收藏
页数:12
相关论文
共 47 条
  • [1] In silico identification and molecular dynamic simulations of derivatives of 6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide against main protease 3CLpro of SARS-CoV-2 viral infection
    Prashasti Sinha
    Anil Kumar Yadav
    Journal of Molecular Modeling, 2023, 29
  • [2] In silico evaluation of antiviral activity of flavone derivatives and commercial drugs against SARS-CoV-2 main protease (3CLpro)
    Merzouki, Mohammed
    Challioui, Allal
    Bourassi, Lamiae
    Abidi, Rania
    Bouammli, Boufelja
    El Farh, Larbi
    MOROCCAN JOURNAL OF CHEMISTRY, 2023, 11 (01): : 129 - 143
  • [3] Discovery of 3CLpro inhibitor of SARS-CoV-2 main protease
    Kuang, Yi
    Ma, Xiaodong
    Shen, Wenjing
    Rao, Qingqing
    Yang, Shengxiang
    FUTURE SCIENCE OA, 2023, 9 (04):
  • [4] In silico and in vitro assays reveal potential inhibitors against 3CLpro main protease of SARS-CoV-2
    Iype, Eldhose
    Jisha, Pillai U.
    Kumar, Indresh
    Gaastra-Nedea, Silvia V.
    Subramanian, Ramachandran
    Saha, Ranendra Narayan
    Dutta, Mainak
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (23) : 12800 - 12811
  • [5] Dimethyl sulfoxide reduces the stability but enhances catalytic activity of the main SARS-CoV-2 protease 3CLpro
    Ferreira, Juliana C.
    Fadl, Samar
    Ilter, Metehan
    Pekel, Hanife
    Rezgui, Rachid
    Sensoy, Ozge
    Rabeh, Wael M.
    FASEB JOURNAL, 2021, 35 (08)
  • [6] Chlorogenic acid may be a potent inhibitor of dimeric SARS-CoV-2 main protease 3CLpro: an in silico study
    Patil, Rajkumar Sanjay
    Khatib, Nayeem A.
    Patil, Vishal Shivalingappa
    Suryawanshi, Shailendra Sanjay
    TRADITIONAL MEDICINE RESEARCH, 2021, 6 (02):
  • [7] The main protease 3CLpro of the SARS-CoV-2 virus: how to turn an enemy into a helper
    Belenkaya, Svetlana V.
    Merkuleva, Iuliia A.
    Yarovaya, Olga I.
    Chirkova, Varvara Yu.
    Sharlaeva, Elena A.
    Shanshin, Daniil V.
    Volosnikova, Ekaterina A.
    Vatsadze, Sergey Z.
    Khvostov, Mikhail V.
    Salakhutdinov, Nariman F.
    Shcherbakov, Dmitriy N.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [8] Inhibition of SARS-CoV-2 main protease 3CLPro by means of α-ketoamide and pyridone-containing pharmaceuticals using in silico molecular docking
    Elzupir, Amin O.
    JOURNAL OF MOLECULAR STRUCTURE, 2020, 1222
  • [9] In Silico Identification of Potential Inhibitors of the SARS-CoV-2 Main Protease among a PubChem Database of Avian Infectious Bronchitis Virus 3CLPro Inhibitors
    Soulere, Laurent
    Barbier, Thibaut
    Queneau, Yves
    BIOMOLECULES, 2023, 13 (06)
  • [10] Synthesis, in silico and in vitro studies of novel quinazolinone derivatives as potential SARS-CoV-2 3CLpro inhibitors
    Alamri, Mubarak A.
    Afzal, Obaid
    Akhtar, Md Jawaid
    Karim, Shahid
    Husain, Mohammed
    Alossaimi, Manal A.
    Riadi, Yassine
    ARABIAN JOURNAL OF CHEMISTRY, 2024, 17 (01)