Decoupling the effects of nutrition, age, and behavioral caste on honey bee physiology, immunity, and colony health

被引:11
作者
Corona, Miguel [1 ]
Branchiccela, Belen [2 ]
Alburaki, Mohamed [1 ]
Palmer-Young, Evan C. C. [1 ]
Madella, Shayne [1 ]
Chen, Yanping [1 ]
Evans, Jay D. D. [1 ]
机构
[1] USDA, Bee Res Lab, Beltsville, MD 20705 USA
[2] Inst Nacl Invest Agr INIA Colonia, Secc Apicultura, Programa Prod Familiar, Montevideo, Uruguay
关键词
Apis mellifera; vitellogenin; MRJP1; MFE; insulin; DWV; immune genes; dorsal; DIVISION-OF-LABOR; APIS-MELLIFERA; JUVENILE-HORMONE; GENE-EXPRESSION; WORKER HONEYBEES; VITELLOGENIN; PROTEIN; SURVIVAL; PLASTICITY; PEPTIDE;
D O I
10.3389/fphys.2023.1149840
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Nutritional stress, especially a dearth of pollen, has been linked to honey bee colony losses. Colony-level experiments are critical for understanding the mechanisms by which nutritional stress affects individual honey bee physiology and pushes honey bee colonies to collapse. In this study, we investigated the impact of pollen restriction on key markers of honey bee physiology, main elements of the immune system, and predominant honey bee viruses. To achieve this objective, we uncoupled the effects of behavior, age, and nutritional conditions using a new colony establishment technique designed to control size, demography, and genetic background. Our results showed that the expression of storage proteins, including vitellogenin (vg) and royal jelly major protein 1 (mrjp1), were significantly associated with nursing, pollen ingestion, and older age. On the other hand, genes involved in hormonal regulation including insulin-like peptides (ilp1 and ilp2) and methyl farnesoate epoxidase (mfe), exhibited higher expression levels in young foragers from colonies not experiencing pollen restriction. In contrast, pollen restriction induced higher levels of insulin-like peptides in old nurses. On the other hand, we found a strong effect of behavior on the expression of all immune genes, with higher expression levels in foragers. In contrast, the effects of nutrition and age were significant only the expression of the regulatory gene dorsal. We also found multiple interactions of the experimental variables on viral titers, including higher Deformed wing virus (DWV) titers associated with foraging and age-related decline. In addition, nutrition significantly affected DWV titers in young nurses, with higher titers induced by pollen ingestion. In contrast, higher levels of Black queen cell virus (BQCV) were associated with pollen restriction. Finally, correlation, PCA, and NMDS analyses proved that behavior had had the strongest effect on gene expression and viral titers, followed by age and nutrition. These analyses also support multiple interactions among genes and virus analyzed, including negative correlations between the expression of genes encoding storage proteins associated with pollen ingestion and nursing (vg and mrjp1) with the expression of immune genes and DWV titers. Our results provide new insights into the proximal mechanisms by which nutritional stress is associated with changes in honey bee physiology, immunity, and viral titers.
引用
收藏
页数:16
相关论文
共 98 条
  • [31] Variations in the Availability of Pollen Resources Affect Honey Bee Health
    Di Pasquale, Garance
    Alaux, Cedric
    Le Conte, Yves
    Odoux, Jean-Francois
    Pioz, Maryline
    Vaissiere, Bernard E.
    Belzunces, Luc P.
    Decourtye, Axel
    [J]. PLOS ONE, 2016, 11 (09):
  • [32] Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees
    Di Prisco, Gennaro
    Cavaliere, Valeria
    Annoscia, Desiderato
    Varricchio, Paola
    Caprio, Emilio
    Nazzi, Francesco
    Gargiulo, Giuseppe
    Pennacchio, Francesco
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (46) : 18466 - 18471
  • [33] Intensively Cultivated Landscape and Varroa Mite Infestation Are Associated with Reduced Honey Bee Nutritional State
    Dolezal, Adam G.
    Carrillo-Tripp, Jimena
    Miller, W. Allen
    Bonning, Bryony C.
    Toth, Amy L.
    [J]. PLOS ONE, 2016, 11 (04):
  • [34] Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees
    Drapeau, Mark David
    Albert, Stefan
    Kucharski, Robert
    Prusko, Carsten
    Maleszka, Ryszard
    [J]. GENOME RESEARCH, 2006, 16 (11) : 1385 - 1394
  • [35] Interactions between the cellular and humoral immune responses in Drosophila
    Elrod-Erickson, M
    Mishra, S
    Schneider, D
    [J]. CURRENT BIOLOGY, 2000, 10 (13) : 781 - 784
  • [36] ENGELS W, 1974, AM ZOOL, V14, P1229
  • [37] Immune pathways and defence mechanisms in honey bees Apis mellifera
    Evans, J. D.
    Aronstein, K.
    Chen, Y. P.
    Hetru, C.
    Imler, J. -L.
    Jiang, H.
    Kanost, M.
    Thompson, G. J.
    Zou, Z.
    Hultmark, D.
    [J]. INSECT MOLECULAR BIOLOGY, 2006, 15 (05) : 645 - 656
  • [38] JUVENILE HORMONE, VITELLOGENIN AND HEMOCYTE COMPOSITION IN WINTER WORKER HONEYBEES (APIS-MELLIFERA)
    FLURI, P
    WILLE, H
    GERIG, L
    LUSCHER, M
    [J]. EXPERIENTIA, 1977, 33 (09): : 1240 - 1241
  • [39] EFFECTS OF INTRACOLONY VARIABILITY IN BEHAVIORAL-DEVELOPMENT ON PLASTICITY OF DIVISION-OF-LABOR IN HONEY-BEE COLONIES
    GIRAY, T
    ROBINSON, GE
    [J]. BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY, 1994, 35 (01) : 13 - 20
  • [40] Goblirsch M, 2013, PLOS ONE, V8, DOI [10.1371/journal.pone.0058165, 10.1371/journal.pone.0069831]