Analysis of q-fractional coupled implicit systems involving the nonlocal Riemann-Liouville and Erdelyi-Kober q-fractional integral conditions

被引:2
|
作者
Alam, Mehboob [1 ,3 ]
Khalid, Khansa Hina [2 ]
机构
[1] GIK Inst, Fac Engn Sci, Topi 23640, Pakistan
[2] Univ Peshawar, Dept Math, Peshawar 25000, Pakistan
[3] GIK Inst, Fac Engn Sci, Topi 23640, KP, Pakistan
关键词
coupled system; fixed point theory; fractional differential equations; integral conditions; Ulam-Hyers stability; DIFFERENTIAL-EQUATIONS; STABILITY ANALYSIS; EXISTENCE;
D O I
10.1002/mma.9208
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solutions to fractional differential equations are a developing area of current research, given that these equations arise in various domains. In this article, we provide some necessary criteria for the existence, uniqueness, and different types of Ulam stability for a coupled implicit system requiring the conditions for nonlocal Riemann-Liouville and Erdelyi-Kober q-fractional integral conditions. The uniqueness and existence results for the suggested coupled system are demonstrated using Banach fixed point theorem and Leray-Schauder of cone type. We also explore the various types of stability using classical methods of nonlinear functional analysis. To verify the effectiveness of our theoretical outcomes, we study an interesting example.
引用
收藏
页码:12711 / 12734
页数:24
相关论文
共 50 条
  • [21] On Perturbed Fractional Differential Inclusions with Nonlocal Multi-point Erdelyi-Kober Fractional Integral Boundary Conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (01)
  • [22] Coupled systems of Riemann-Liouville fractional differential equations with Hadamard fractional integral boundary conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (01): : 295 - 308
  • [23] A Study of Fractional Differential Equations and Inclusions with Nonlocal Erdelyi-Kober Type Integral Boundary Conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Zhou, Yong
    Alsaedi, Ahmed
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (05) : 1315 - 1328
  • [24] Sequential Riemann-Liouville and Hadamard-Caputo Fractional Differential Systems with Nonlocal Coupled Fractional Integral Boundary Conditions
    Kiataramkul, Chanakarn
    Yukunthorn, Weera
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    AXIOMS, 2021, 10 (03)
  • [25] Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
    Ahmad, Bashir
    Nieto, Juan J.
    BOUNDARY VALUE PROBLEMS, 2011, : 1 - 9
  • [26] CAPUTO TYPE MODIFICATION OF THE ERDELYI-KOBER COUPLED IMPLICIT FRACTIONAL DIFFERENTIAL SYSTEMS WITH RETARDATION AND ANTICIPATION
    Boumaaza, Mokhtar
    Benchohra, Mouffak
    Nieto, Juan J.
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2021, 13 (02): : 101 - 114
  • [27] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Jessada Tariboon
    Sotiris K Ntouyas
    Weerawat Sudsutad
    Boundary Value Problems, 2014
  • [28] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    BOUNDARY VALUE PROBLEMS, 2014,
  • [29] Mixed problems of fractional coupled systems of Riemann-Liouville differential equations and Hadamard integral conditions
    Ntouyas, S. K.
    Tariboon, Jessada
    Thiramanus, Phollakrit
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (05) : 813 - 828
  • [30] Nonlinear fractional Caputo-Langevin equation with nonlocal Riemann-Liouville fractional integral conditions
    Yukunthorn, Weera
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,