Transfer Learning With Spatial-Temporal Graph Convolutional Network for Traffic Prediction

被引:17
|
作者
Yao, Zhixiu [1 ]
Xia, Shichao [2 ]
Li, Yun [1 ]
Wu, Guangfu [2 ]
Zuo, Linli [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Software Engn, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Roads; Transfer learning; Convolutional neural networks; Feature extraction; Task analysis; Data models; Convolution; Intelligent transportation system; traffic prediction; graph convolutional network; transfer learning; adversarial domain adaptation; FLOW PREDICTION; DEEP;
D O I
10.1109/TITS.2023.3250424
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate spatial-temporal traffic modeling and prediction play an important role in intelligent transportation systems (ITS). Recently, various deep learning methods such as graph convolutional networks (GCNs) and recurrent neural networks (RNNs) have been widely adopted in traffic prediction tasks to extract spatial-temporal dependencies based on a large volume of high-quality training data. However, there exist data scarcity problems in some transportation networks, and in these cases, the performance of traditional GCNs and RNNs based approaches will degrade sharply. To address this problem, this paper proposes an adversarial domain adaptation with spatial-temporal graph convolutional network (Ada-STGCN) model to predict traffic indicators for a data-scarce target road network by transferring the knowledge from a data-sufficient source road network. Specifically, Ada-STGCN first develops a spatial-temporal graph convolutional network that combines the GCN and gated recurrent unit (GRU) to extract spatial-temporal dependencies from source and target road networks. Then, the technique of adversarial domain adaptation is integrated with the spatial-temporal graph convolutional network to learn discriminative and domain-invariant features to facilitate knowledge transfer. Experimental results on the real-world traffic datasets in the traffic flow prediction task demonstrate that our model yields the best prediction performance compared to state-of-the-art baseline methods.
引用
收藏
页码:8592 / 8605
页数:14
相关论文
共 50 条
  • [31] Traffic Message Channel Prediction Based on Graph Convolutional Network
    Li, Ning
    Jia, Shuangcheng
    Li, Qian
    IEEE ACCESS, 2021, 9 : 135423 - 135431
  • [32] Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting
    Guo, Shengnan
    Lin, Youfang
    Wan, Huaiyu
    Li, Xiucheng
    Cong, Gao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5415 - 5428
  • [33] Spatial-Temporal Aggregation Graph Convolution Network for Efficient Mobile Cellular Traffic Prediction
    Zhao, Nan
    Wu, Aonan
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (03) : 587 - 591
  • [34] T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction
    Zhao, Ling
    Song, Yujiao
    Zhang, Chao
    Liu, Yu
    Wang, Pu
    Lin, Tao
    Deng, Min
    Li, Haifeng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (09) : 3848 - 3858
  • [35] Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
    Lv, Mingqi
    Hong, Zhaoxiong
    Chen, Ling
    Chen, Tieming
    Zhu, Tiantian
    Ji, Shouling
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3337 - 3348
  • [36] Spatial-Temporal Chebyshev Graph Neural Network for Traffic Flow Prediction in IoT-Based ITS
    Yan, Biwei
    Wang, Guijuan
    Yu, Jiguo
    Jin, Xiaozheng
    Zhang, Hongliang
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (12): : 9266 - 9279
  • [37] Graph learning-based spatial-temporal graph convolutional neural networks for traffic forecasting
    Hu, Na
    Zhang, Dafang
    Xie, Kun
    Liang, Wei
    Hsieh, Meng-Yen
    CONNECTION SCIENCE, 2022, 34 (01) : 429 - 448
  • [38] Capturing Local and Global Spatial-Temporal Correlations of Spatial-Temporal Graph Data for Traffic Flow Prediction
    Cao, Shuqin
    Wu, Libing
    Zhang, Rui
    Li, Jianxin
    Wu, Dan
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [39] ESTNet: Embedded Spatial-Temporal Network for Modeling Traffic Flow Dynamics
    Luo, Guiyang
    Zhang, Hui
    Yuan, Quan
    Li, Jinglin
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 19201 - 19212
  • [40] Graph-Based Spatial-Temporal Convolutional Network for Vehicle Trajectory Prediction in Autonomous Driving
    Sheng, Zihao
    Xu, Yunwen
    Xue, Shibei
    Li, Dewei
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 17654 - 17665