Transfer Learning With Spatial-Temporal Graph Convolutional Network for Traffic Prediction

被引:17
|
作者
Yao, Zhixiu [1 ]
Xia, Shichao [2 ]
Li, Yun [1 ]
Wu, Guangfu [2 ]
Zuo, Linli [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Software Engn, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Roads; Transfer learning; Convolutional neural networks; Feature extraction; Task analysis; Data models; Convolution; Intelligent transportation system; traffic prediction; graph convolutional network; transfer learning; adversarial domain adaptation; FLOW PREDICTION; DEEP;
D O I
10.1109/TITS.2023.3250424
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate spatial-temporal traffic modeling and prediction play an important role in intelligent transportation systems (ITS). Recently, various deep learning methods such as graph convolutional networks (GCNs) and recurrent neural networks (RNNs) have been widely adopted in traffic prediction tasks to extract spatial-temporal dependencies based on a large volume of high-quality training data. However, there exist data scarcity problems in some transportation networks, and in these cases, the performance of traditional GCNs and RNNs based approaches will degrade sharply. To address this problem, this paper proposes an adversarial domain adaptation with spatial-temporal graph convolutional network (Ada-STGCN) model to predict traffic indicators for a data-scarce target road network by transferring the knowledge from a data-sufficient source road network. Specifically, Ada-STGCN first develops a spatial-temporal graph convolutional network that combines the GCN and gated recurrent unit (GRU) to extract spatial-temporal dependencies from source and target road networks. Then, the technique of adversarial domain adaptation is integrated with the spatial-temporal graph convolutional network to learn discriminative and domain-invariant features to facilitate knowledge transfer. Experimental results on the real-world traffic datasets in the traffic flow prediction task demonstrate that our model yields the best prediction performance compared to state-of-the-art baseline methods.
引用
收藏
页码:8592 / 8605
页数:14
相关论文
共 50 条
  • [21] Context based spatial-temporal graph convolutional networks for traffic prediction
    Jia, Chaolong
    Zhang, Wenjing
    He, Yumei
    Wang, Rong
    Li, Jinchao
    Xiao, Yunpeng
    KNOWLEDGE-BASED SYSTEMS, 2025, 310
  • [22] Spatial-Temporal Attention Graph Convolution Network on Edge Cloud for Traffic Flow Prediction
    Lai, Qifeng
    Tian, Jinyu
    Wang, Wei
    Hu, Xiping
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 4565 - 4576
  • [23] Dynamic multi-scale spatial-temporal graph convolutional network for traffic flow prediction
    Gao, Ming
    Du, Zhuoran
    Qin, Hongmao
    Wang, Wei
    Jin, Guangyin
    Xie, Guotao
    KNOWLEDGE-BASED SYSTEMS, 2024, 305
  • [24] Attention spatial-temporal graph neural network for traffic prediction
    Gan P.
    Nong L.
    Zhang W.
    Lin J.
    Wang J.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (01): : 168 - 176
  • [25] Spatial-temporal clustering enhanced multi-graph convolutional network for traffic flow prediction
    Bao, Yinxin
    Shen, Qinqin
    Cao, Yang
    Shi, Quan
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [26] Deep spatial-temporal information fusion dynamic graph convolutional network for traffic flow prediction
    Li, Guoyan
    Wang, Wei
    Wang, Li
    Liu, Yi
    Zhang, Minghui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [27] Traffic Speed Prediction Based on Time Classification in Combination With Spatial Graph Convolutional Network
    Pan, Xiuqin
    Hou, Fei
    Li, Sumin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8799 - 8808
  • [28] Graph Attention Network With Spatial-Temporal Clustering for Traffic Flow Forecasting in Intelligent Transportation System
    Chen, Yan
    Shu, Tian
    Zhou, Xiaokang
    Zheng, Xuzhe
    Kawai, Akira
    Fueda, Kaoru
    Yan, Zheng
    Liang, Wei
    Wang, Kevin I-Kai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8727 - 8737
  • [29] Temporal-Spatial Quantum Graph Convolutional Neural Network Based on Schrodinger Approach for Traffic Congestion Prediction
    Qu, Zhiguo
    Liu, Xinzhu
    Zheng, Min
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8677 - 8686
  • [30] Dynamic Global-Local Spatial-Temporal Network for Traffic Speed Prediction
    Feng, Dong
    Wu, Zhongcheng
    Zhang, Jun
    Wu, Ziheng
    IEEE ACCESS, 2020, 8 : 209296 - 209307