Transfer Learning With Spatial-Temporal Graph Convolutional Network for Traffic Prediction

被引:17
|
作者
Yao, Zhixiu [1 ]
Xia, Shichao [2 ]
Li, Yun [1 ]
Wu, Guangfu [2 ]
Zuo, Linli [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Software Engn, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Roads; Transfer learning; Convolutional neural networks; Feature extraction; Task analysis; Data models; Convolution; Intelligent transportation system; traffic prediction; graph convolutional network; transfer learning; adversarial domain adaptation; FLOW PREDICTION; DEEP;
D O I
10.1109/TITS.2023.3250424
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate spatial-temporal traffic modeling and prediction play an important role in intelligent transportation systems (ITS). Recently, various deep learning methods such as graph convolutional networks (GCNs) and recurrent neural networks (RNNs) have been widely adopted in traffic prediction tasks to extract spatial-temporal dependencies based on a large volume of high-quality training data. However, there exist data scarcity problems in some transportation networks, and in these cases, the performance of traditional GCNs and RNNs based approaches will degrade sharply. To address this problem, this paper proposes an adversarial domain adaptation with spatial-temporal graph convolutional network (Ada-STGCN) model to predict traffic indicators for a data-scarce target road network by transferring the knowledge from a data-sufficient source road network. Specifically, Ada-STGCN first develops a spatial-temporal graph convolutional network that combines the GCN and gated recurrent unit (GRU) to extract spatial-temporal dependencies from source and target road networks. Then, the technique of adversarial domain adaptation is integrated with the spatial-temporal graph convolutional network to learn discriminative and domain-invariant features to facilitate knowledge transfer. Experimental results on the real-world traffic datasets in the traffic flow prediction task demonstrate that our model yields the best prediction performance compared to state-of-the-art baseline methods.
引用
收藏
页码:8592 / 8605
页数:14
相关论文
共 50 条
  • [1] Spatial-Temporal Dynamic Graph Convolutional Neural Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    IEEE ACCESS, 2023, 11 : 97920 - 97929
  • [2] Spatial-Temporal Traffic Prediction With an Interactive Spatial-Enhanced Graph Convolutional Network Model
    Li, Qin
    Xu, Pai
    Yang, Xuan
    Wu, Yuankai
    He, Hongwen
    He, Deqiang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, : 20767 - 20778
  • [3] Modeling Global Spatial-Temporal Graph Attention Network for Traffic Prediction
    Sun, Bin
    Zhao, Duan
    Shi, Xinguo
    He, Yongxin
    IEEE ACCESS, 2021, 9 : 8581 - 8594
  • [4] DSTGCN: Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction
    Hu, Jia
    Lin, Xianghong
    Wang, Chu
    IEEE SENSORS JOURNAL, 2022, 22 (13) : 13116 - 13124
  • [5] Hierarchical Traffic Flow Prediction Based on Spatial-Temporal Graph Convolutional Network
    Wang, Hanqiu
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 16137 - 16147
  • [6] TPGraph: A Spatial-Temporal Graph Learning Framework for Accurate Traffic Prediction on Arterial Roads
    Ouyang, Jinhui
    Yu, Mingxia
    Yu, Weiren
    Qin, Zheng
    Regan, Amelia C.
    Wu, Di
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 3911 - 3926
  • [7] Spatial-Temporal Dynamic Graph Convolutional Network With Interactive Learning for Traffic Forecasting
    Liu, Aoyu
    Zhang, Yaying
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7645 - 7660
  • [8] STFGCN: Spatial-temporal fusion graph convolutional network for traffic prediction
    Li, Hao
    Liu, Jie
    Han, Shiyuan
    Zhou, Jin
    Zhang, Tong
    Chen, C. L. Philip
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [9] Spatial-Temporal Dilated and Graph Convolutional Network for traffic prediction
    Yang, Guoliang
    Wen, Junlin
    Yu, Dinglin
    Zhang, Shuo
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 802 - 806
  • [10] Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction
    Sun, Yanfeng
    Jiang, Xiangheng
    Hu, Yongli
    Duan, Fuqing
    Guo, Kan
    Wang, Boyue
    Gao, Junbin
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 23680 - 23693