Functional materials for modifying interfaces between solid electrolytes and lithium electrodes of all-solid-state lithium metal batteries

被引:14
|
作者
Ko, Jaehwan [1 ]
Yoon, Young Soo [1 ]
机构
[1] Gachon Univ, Dept Mat Sci & Engn, Seongnam, South Korea
基金
新加坡国家研究基金会;
关键词
All-solid-state battery; Lithium metal battery; Interfacial modification; Lithium dendrite suppression; Functional ceramic materials; LI-METAL; ANODE MATERIALS; FLUOROETHYLENE CARBONATE; RECHARGEABLE BATTERIES; ION BATTERY; DENDRITE; SURFACE; AL2O3; PERFORMANCE; DEPOSITION;
D O I
10.1007/s43207-023-00293-6
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
All-solid-state lithium metal batteries have attracted considerable attention as the next-generation energy storage devices with high energy density and safety. This review focuses on the properties of interfaces between solid electrolytes and lithium electrodes, which are important for realizing all-solid-state lithium metal batteries. Various functional materials were used for modifying such interfaces, including amorphous oxide solid electrolytes, LiF, Al2O3, and carbon-based materials. After reviewing literature works related to this topic, we concluded that optimizing the combinations of the various functional materials should be studied more actively. In addition, along with performance optimization of functional materials, the development of mass-production processes should be carried out in parallel.
引用
收藏
页码:591 / 613
页数:23
相关论文
共 50 条
  • [1] Functional materials for modifying interfaces between solid electrolytes and lithium electrodes of all-solid-state lithium metal batteries
    Jaehwan Ko
    Young Soo Yoon
    Journal of the Korean Ceramic Society, 2023, 60 : 591 - 613
  • [2] Issues Concerning Interfaces with Inorganic Solid Electrolytes in All-Solid-State Lithium Metal Batteries
    Sun, Zhouting
    Liu, Mingyi
    Zhu, Yong
    Xu, Ruochen
    Chen, Zhiqiang
    Zhang, Peng
    Lu, Zeyu
    Wang, Pengcheng
    Wang, Chengrui
    SUSTAINABILITY, 2022, 14 (15)
  • [3] Cell failures of all-solid-state lithium metal batteries with inorganic solid electrolytes: Lithium dendrites
    Ke, Xinyou
    Wang, Yan
    Dai, Liming
    Yuan, Chris
    ENERGY STORAGE MATERIALS, 2020, 33 : 309 - 328
  • [4] Ductile Inorganic Solid Electrolytes for All-Solid-State Lithium Batteries
    Yu, Tao
    Liu, Yuankai
    Li, Haoyu
    Sun, Yu
    Guo, Shaohua
    Zhou, Haoshen
    CHEMICAL REVIEWS, 2025, : 3595 - 3662
  • [5] Development of materials for all-solid-state lithium batteries
    Machida, N., 2005, Funtai Funamtsu Yakin Kyokai/Japan Soc. of Powder Metallurgy (52): : 589 - 598
  • [6] Solid polymer electrolytes in all-solid-state lithium metal batteries: From microstructures to properties
    Lin, Zongxi
    Sheng, Ouwei
    Cai, Xiaohan
    Duan, Dan
    Yue, Ke
    Nai, Jianwei
    Wang, Yao
    Liu, Tiefeng
    Tao, Xinyong
    Liu, Yujing
    JOURNAL OF ENERGY CHEMISTRY, 2023, 81 : 358 - 378
  • [7] Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries
    Liu, Li
    Zhang, Dechao
    Xu, Xijun
    Liu, Zhengbo
    Liu, Jun
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2021, 37 (02) : 210 - 231
  • [8] Rigid-flexible coupling network solid polymer electrolytes for all-solid-state lithium metal batteries
    Wu, Jian-Chun
    Gao, Shuobin
    Li, Xiaowei
    Zhou, Haitao
    Gao, Hongquan
    Hu, Jinlong
    Fan, Zhonghui
    Liu, Yunjian
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 661 : 1025 - 1032
  • [9] Research progress of all-solid-state lithium-sulfur batteries with sulfide solid electrolytes: materials, interfaces, challenges, and prospects
    Du, Limao
    Wu, Rui
    Wu, Zhan
    Huang, Hui
    Xia, Yang
    Gan, Yongping
    Zhang, Wenkui
    Xia, Xinhui
    He, Xinping
    Zhang, Jun
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (22) : 5760 - 5785
  • [10] Challenges and Prospects of All-Solid-State Electrodes for Solid-State Lithium Batteries
    Dong, Shaowen
    Sheng, Li
    Wang, Li
    Liang, Jie
    Zhang, Hao
    Chen, Zonghai
    Xu, Hong
    He, Xiangming
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (49)