Antiferromagnetic real-space configuration probed by dichroism in scattered x-ray beams with orbital angular momentum

被引:7
|
作者
McCarter, Margaret R. [1 ]
Saleheen, Ahmad I. U. [1 ]
Singh, Arnab [2 ]
Tumbleson, Ryan [1 ,3 ]
Woods, Justin S. [4 ,5 ]
Tremsin, Anton S. [6 ]
Scholl, Andreas [1 ]
De Long, Lance E. [4 ]
Hastings, J. Todd [7 ]
Morley, Sophie A. [1 ]
Roy, Sujoy [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA
[4] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA
[5] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[6] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[7] Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
LIGHT; CHARGE; STATES;
D O I
10.1103/PhysRevB.107.L060407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
X-ray beams with orbital angular momentum (OAM) are a promising tool for x-ray characterization tech-niques. Beams with OAM have a helicity-an azimuthally varying phase-which leads to a gradient of the light field. New material properties can be probed by utilizing the helicity of an OAM beam. Here, we demonstrate a dichroic effect in resonant diffraction from an artificial antiferromagnet with a topological defect. We found that the scattered OAM beam has circular dichroism at the antiferromagnetic Bragg peak whose sign is coupled to its helicity, which reveals the real-space configuration of the antiferromagnetic ground state. Thermal cycling of the artificial antiferromagnet can change the ground state, as indicated by reversal of the sign of circular dichroism. This result is one of the first demonstrations of a soft x-ray spectroscopy characterization technique utilizing the OAM of x rays. This helicity-dependent circular dichroism exemplifies the potential to utilize OAM beams to probe matter in a way that is inaccessible using currently available x-ray techniques.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Real-space Green's function approach for intrinsic losses in x-ray spectra
    Kas, J. J.
    Rehr, J. J.
    PHYSICAL REVIEW B, 2023, 107 (08)
  • [22] Real-space Green's function approach to resonant inelastic x-ray scattering
    Kas, J. J.
    Rehr, J. J.
    Soininen, J. A.
    Glatzel, P.
    PHYSICAL REVIEW B, 2011, 83 (23)
  • [23] Real-space strain mapping of SOI features using microbeam X-ray diffraction
    Murray, Conal E.
    Polvino, S. M.
    Noyan, I. C.
    Lai, B.
    Cai, Z.
    POWDER DIFFRACTION, 2008, 23 (02) : 106 - 108
  • [24] Seeing real-space dynamics of liquid water through inelastic x-ray scattering
    Iwashita, Takuya
    Wu, Bin
    Chen, Wei-Ren
    Tsutsui, Satoshi
    Baron, Alfred Q. R.
    Egami, Takeshi
    SCIENCE ADVANCES, 2017, 3 (12):
  • [25] Real-space Green's function approach for x-ray spectra at high temperature
    Tan, Tun S.
    Kas, J. J.
    Rehr, J. J.
    PHYSICAL REVIEW B, 2021, 104 (03)
  • [26] X-ray pulse generation with ultra-fast flipping o its orbital angular momentum
    Morgan, J.
    McNeil, B. W. J.
    OPTICS EXPRESS, 2022, 30 (17) : 31171 - 31181
  • [27] Real-space modeling for complex structures based on small-angle X-ray scattering
    Omote, Kazuhiko
    Iwata, Tomoyuki
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2021, 54 : 1290 - 1297
  • [28] Real-Space x-ray tomographic reconstruction of randomly oriented objects with sparse data frames
    Ayyer, Kartik
    Philipp, Hugh T.
    Tate, Mark W.
    Elser, Veit
    Gruner, Sol M.
    OPTICS EXPRESS, 2014, 22 (03): : 2403 - 2413
  • [29] High real-space resolution structure of materials by high-energy x-ray diffraction
    Petkov, V
    Billinge, SJL
    Heising, J
    Kanatzidis, MG
    Shastri, SD
    Kycia, S
    APPLICATIONS OF SYNCHROTRON RADIATION TECHNIQUES TO MATERIALS SCIENCE V, 2000, 590 : 151 - 156
  • [30] Reciprocal-space up-sampling from real-space over sampling in x-ray ptychography
    Batey, D. J.
    Edo, T. B.
    Rau, C.
    Wagner, U.
    Pesic, Z. D.
    Waigh, T. A.
    Rodenburg, J. M.
    PHYSICAL REVIEW A, 2014, 89 (04):