Antiferromagnetic real-space configuration probed by dichroism in scattered x-ray beams with orbital angular momentum

被引:8
作者
McCarter, Margaret R. [1 ]
Saleheen, Ahmad I. U. [1 ]
Singh, Arnab [2 ]
Tumbleson, Ryan [1 ,3 ]
Woods, Justin S. [4 ,5 ]
Tremsin, Anton S. [6 ]
Scholl, Andreas [1 ]
De Long, Lance E. [4 ]
Hastings, J. Todd [7 ]
Morley, Sophie A. [1 ]
Roy, Sujoy [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA
[4] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA
[5] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[6] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[7] Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
LIGHT; CHARGE; STATES;
D O I
10.1103/PhysRevB.107.L060407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
X-ray beams with orbital angular momentum (OAM) are a promising tool for x-ray characterization tech-niques. Beams with OAM have a helicity-an azimuthally varying phase-which leads to a gradient of the light field. New material properties can be probed by utilizing the helicity of an OAM beam. Here, we demonstrate a dichroic effect in resonant diffraction from an artificial antiferromagnet with a topological defect. We found that the scattered OAM beam has circular dichroism at the antiferromagnetic Bragg peak whose sign is coupled to its helicity, which reveals the real-space configuration of the antiferromagnetic ground state. Thermal cycling of the artificial antiferromagnet can change the ground state, as indicated by reversal of the sign of circular dichroism. This result is one of the first demonstrations of a soft x-ray spectroscopy characterization technique utilizing the OAM of x rays. This helicity-dependent circular dichroism exemplifies the potential to utilize OAM beams to probe matter in a way that is inaccessible using currently available x-ray techniques.
引用
收藏
页数:7
相关论文
共 69 条
[1]   Electric and antiferromagnetic chiral textures at multiferroic domain walls [J].
Chauleau, J. -Y. ;
Chirac, T. ;
Fusil, S. ;
Garcia, V. ;
Akhtar, W. ;
Tranchida, J. ;
Thibaudeau, P. ;
Gross, I. ;
Blouzon, C. ;
Finco, A. ;
Bibes, M. ;
Dkhil, B. ;
Khalyavin, D. D. ;
Manuel, P. ;
Jacques, V. ;
Jaouen, N. ;
Viret, M. .
NATURE MATERIALS, 2020, 19 (04) :386-+
[2]   Orbital Angular Momentum Waves: Generation, Detection, and Emerging Applications [J].
Chen, Rui ;
Zhou, Hong ;
Moretti, Marco ;
Wang, Xiaodong ;
Li, Jiandong .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (02) :840-868
[3]   Spontaneous Magnetic Superdomain Wall Fluctuations in an Artificial Antiferromagnet [J].
Chen, X. M. ;
Farmer, B. ;
Woods, J. S. ;
Dhuey, S. ;
Hu, W. ;
Mazzoli, C. ;
Wilkins, S. B. ;
Chopdekar, R., V ;
Scholl, A. ;
Robinson, I. K. ;
De Long, L. E. ;
Roy, S. ;
Hastings, J. T. .
PHYSICAL REVIEW LETTERS, 2019, 123 (19)
[4]   Seeing is believing: visualization of antiferromagnetic domains [J].
Cheong, Sang-Wook ;
Fiebig, Manfred ;
Wu, Weida ;
Chapon, Laurent ;
Kiryukhin, Valery .
NPJ QUANTUM MATERIALS, 2020, 5 (01)
[5]  
Chun SH, 2015, NAT PHYS, V11, P462, DOI [10.1038/NPHYS3322, 10.1038/nphys3322]
[6]   Resonant X-Ray Scattering Studies of Charge Order in Cuprates [J].
Comin, Riccardo ;
Damascelli, Andrea .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 7, 2016, 7 :369-405
[7]   Measuring OAM states of light beams with gradually-changing-period gratings [J].
Dai, Kunjian ;
Gao, Chunqing ;
Zhong, Lei ;
Na, Quanxin ;
Wang, Qing .
OPTICS LETTERS, 2015, 40 (04) :562-565
[8]   Photoelectric effect with a twist [J].
De Ninno, Giovanni ;
Waetzel, Jonas ;
Ribic, Primoz Rebernik ;
Allaria, Enrico ;
Coreno, Marcello ;
Danailov, Miltcho B. ;
David, Christian ;
Demidovich, Alexander ;
Di Fraia, Michele ;
Giannessi, Luca ;
Hansen, Klavs ;
Krusic, Spela ;
Manfredda, Michele ;
Meyer, Michael ;
Mihelic, Andrej ;
Mirian, Najmeh ;
Plekan, Oksana ;
Ressel, Barbara ;
Roesner, Benedikt ;
Simoncig, Alberto ;
Spampinati, Simone ;
Stupar, Matija ;
Zitnik, Matjaz ;
Zangrando, Marco ;
Callegari, Carlo ;
Berakdar, Jamal .
NATURE PHOTONICS, 2020, 14 (09) :554-+
[9]  
Dholakia K, 2011, NAT PHOTONICS, V5, P335, DOI [10.1038/NPHOTON.2011.80, 10.1038/nphoton.2011.80]
[10]  
Fanciulli M., INT J NANOTECHNOL