Predicting Heart Failure in Patients with Atrial Fibrillation: A Report from the Prospective COOL-AF Registry

被引:4
|
作者
Krittayaphong, Rungroj [1 ]
Chichareon, Ply [2 ]
Komoltri, Chulalak [3 ]
Sairat, Poom [1 ]
Lip, Gregory Y. H. [4 ,5 ,6 ]
机构
[1] Mahidol Univ, Fac Med Siriraj Hosp, Dept Med, Div Cardiol, Bangkok 10700, Thailand
[2] Prince Songkla Univ, Fac Med, Dept Internal Med, Cardiol Unit, Hat Yai 90110, Thailand
[3] Mahidol Univ, Fac Med Siriraj Hosp, Dept Res Promot, Bangkok 10700, Thailand
[4] Liverpool John Moores Univ, Univ Liverpool, Liverpool Ctr Cardiovasc Sci, Liverpool L14 3PE, England
[5] Liverpool Heart & Chest Hosp, Liverpool L14 3PE, England
[6] Aalborg Univ, Dept Clin Med, DK-9220 Aalborg, Denmark
关键词
atrial fibrillation; heart failure; predictive risk model; CLINICAL-TRIALS; OUTCOMES; ASSOCIATION; EVENTS; RISK;
D O I
10.3390/jcm12041265
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: This study aimed to determine risk factors and incidence rate and develop a predictive risk model for heart failure for Asian patients with atrial fibrillation (AF). Methods: This is a prospective multicenter registry of patients with non-valvular AF in Thailand conducted between 2014 and 2017. The primary outcome was the occurrence of an HF event. A predictive model was developed using a multivariable Cox-proportional model. The predictive model was assessed using C-index, D-statistics, Calibration plot, Brier test, and survival analysis. Results: There were a total of 3402 patients (average age 67.4 years, 58.2% male) with mean follow-up duration of 25.7 +/- 10.6 months. Heart failure occurred in 218 patients during follow-up, representing an incidence rate of 3.03 (2.64-3.46) per 100 person-years. There were ten HF clinical factors in the model. The predictive model developed from these factors had a C-index and D-statistic of 0.756 (95% CI: 0.737-0.775) and 1.503 (95% CI: 1.372-1.634), respectively. The calibration plots showed a good agreement between the predicted and observed model with the calibration slope of 0.838. The internal validation was confirmed using the bootstrap method. The Brier score indicated that the model had a good prediction for HF. Conclusions: We provide a validated clinical HF predictive model for patients with AF, with good prediction and discrimination values.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Is Heart Rate Important for Patients With Heart Failure in Atrial Fibrillation?
    Cullington, Damien
    Goode, Kevin M.
    Zhang, Jufen
    Cleland, John G. F.
    Clark, Andrew L.
    JACC-HEART FAILURE, 2014, 2 (03) : 213 - 220
  • [42] Systolic blood pressure and mortality in patients with atrial fibrillation and heart failure: insights from the AFFIRM and AF-CHF studies
    Tremblay-Gravel, Maxime
    Khairy, Paul
    Roy, Denis
    Leduc, Hugues
    Wyse, D. George
    Cadrin-Tourigny, Julia
    Macle, Laurent
    Dubuc, Marc
    Andrade, Jason
    Rivard, Lena
    Guerra, Peter G.
    Thibault, Bernard
    Ahmed, Ali
    Talajic, Mario
    Guertin, Marie-Claude
    White, Michel
    EUROPEAN JOURNAL OF HEART FAILURE, 2014, 16 (11) : 1168 - 1174
  • [43] Progression From Paroxysmal to Sustained Atrial Fibrillation as an Increased Risk of Hospitalization for Heart Failure: The Fushimi Af Registry
    Ogawa, Hisashi
    An, Yoshimori
    Ishii, Mitsuru
    Iguchi, Moritake
    Esato, Masahiro
    Chun, Yeong-Hwa
    Wada, Hiromichi
    Hasegawa, Koji
    Abe, Mitsuru
    Akao, Masaharu
    CIRCULATION, 2016, 134
  • [44] Cardiovascular Events and Mortality in Patients With Atrial Fibrillation and Anemia (from the Fushimi AF Registry)
    An, Yoshimori
    Ogawa, Hisashi
    Esato, Masahiro
    Ishii, Mitsuru
    Iguchi, Moritake
    Masunaga, Nobutoyo
    Fujino, Akiko
    Ide, Yuya
    Hamatani, Yasuhiro
    Doi, Kosuke
    Ikeda, Syuhei
    Ishigami, Kenjiro
    Tsuji, Hikari
    Wada, Hiromichi
    Hasegawa, Koji
    Abe, Mitsuru
    Lip, Gregory Y. H.
    Akao, Masaharu
    AMERICAN JOURNAL OF CARDIOLOGY, 2020, 134 : 74 - 82
  • [45] Ethnic differences in atrial fibrillation among patients with heart failure in Asia
    Tan, Eugene S. J.
    Goh, Vera
    Santema, Bernadet T.
    Tay, Wan Ting
    Teng, Tiew-Hwa Katherine
    Yap, Jonathan
    Tromp, Jasper
    Hung, Chung-Lieh
    Chopra, Vijay
    Anand, Inder
    MacDonald, Michael R.
    Ling, Lieng Hsi
    Van Gelder, Isabelle C.
    Rienstra, Michiel
    Voors, Adriaan A.
    Richards, A. Mark
    Lam, Carolyn S. P.
    ESC HEART FAILURE, 2020, 7 (04): : 1419 - 1429
  • [46] Characteristics and Outcomes of Atrial Fibrillation in Chronic Heart Failure Patients: A Comprehensive Analysis of the Colombian Heart Failure Registry
    Rivera-Toquica, Alex
    Saldarriaga, Clara
    Buelvas-Herazo, Jannes
    Rolong, Balkis
    Manzur-Jatin, Fernando
    Mosquera-Jimenez, Jose Ignacio
    Pacheco-Jimenez, Oscar Alfredo
    Rodriguez-Ceron, Alvaro Hernan
    Rodriguez-Gomez, Patricia
    Rivera-Toquica, Fernando
    Trout-Guardiola, G. Guillermo
    De Leon-Espitia, Marco Antonio
    Castro-Osorio, Edgar Eduardo
    Echeverria, Luis Eduardo
    Gomez-Mesa, Juan Esteban
    CARDIOLOGY RESEARCH, 2024, 15 (01) : 37 - 46
  • [47] Machine Learning-Driven Mortality Prediction in Heart Failure Patients with Atrial Fibrillation: Evidence from the Jordanian Heart Failure Registry
    Izraiq, Mahmoud
    Snr, Raed Ibrahim Alawaisheh
    Hamam, Ismail
    Hajjiri, Mohammad
    Jarrad, Ibrahim K.
    Albustanji, Qutaiba
    Ahmed, Yaman B.
    Abu-Dhaim, Omran A.
    Zuraik, Ibrahim
    Toubasi, Ahmad A.
    Dmour, Mohammad Ali
    Abu-Hantash, Hadi
    RESEARCH REPORTS IN CLINICAL CARDIOLOGY, 2024, 15 : 35 - 44
  • [48] Heart failure subtypes and thromboembolic risk in patients with atrial fibrillation: The PREFER in AF - HF substudy
    Siller-Matula, Jolanta M.
    Pecen, Ladislav
    Patti, Giuseppe
    Lucerna, Markus
    Kirchhof, Paulus
    Lesiak, Maciej
    Huber, Kurt
    Verheugt, Freek W. A.
    Lang, Irene M.
    Renda, Giulia
    Schnabel, Renate B.
    Wachter, Rolf
    Kotecha, Dipak
    Sellal, Jean-Marc
    Rohla, Miklos
    Ricci, Fabrizio
    De Caterina, Raffaele
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2018, 265 : 141 - 147
  • [49] Predicting cerebral infarction in patients with atrial fibrillation using machine learning: The Fushimi AF registry
    Nishi, Hidehisa
    Oishi, Naoya
    Ogawa, Hisashi
    Natsue, Kishida
    Doi, Kento
    Kawakami, Osamu
    Aoki, Tomokazu
    Fukuda, Shunichi
    Akao, Masaharu
    Tsukahara, Tetsuya
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2022, 42 (05) : 746 - 756
  • [50] Predicting the development of heart failure in patients with atrial fibrillation
    Enriquez-Vazquez, Daniel
    Crespo-Leiro, Maria G.
    Barge-Caballero, Eduardo
    REVISTA ESPANOLA DE CARDIOLOGIA, 2024, 77 (09): : 720 - 722