Immersed finite element methods for convection diffusion equations

被引:0
|
作者
Jo, Gwanghyun [1 ]
Kwak, Do Y. [2 ]
机构
[1] Kunsan Natl Univ, Dept Math, Gunsan, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 04期
基金
新加坡国家研究基金会;
关键词
immersed finite element method; convection-diffusion problem; interface problem; control volume; upwinding scheme; INTERFACE PROBLEMS; 2-PHASE FLOW; POROUS-MEDIA; APPROXIMATION;
D O I
10.3934/math.2023407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we develop two IFEMs for convection-diffusion equations with interfaces. We first define bilinear forms by adding judiciously defined convection-related line integrals. By establishing Garding's inequality, we prove the optimal error estimates both in L2 and H1-norms. The second method is devoted to the convection-dominated case, where test functions are piecewise constant functions on vertex-associated control volumes. We accompany the so-called upwinding concepts to make the control-volume based IFEM robust to the magnitude of convection terms. The H1 optimal error estimate is proven for control-volume based IFEM. We document numerical experiments which confirm the analysis.
引用
收藏
页码:8034 / 8059
页数:26
相关论文
共 50 条
  • [31] PARTIALLY PENALIZED IMMERSED FINITE ELEMENT METHODS FOR ELLIPTIC INTERFACE PROBLEMS
    Lin, Tao
    Lin, Yanping
    Zhang, Xu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) : 1121 - 1144
  • [32] Preconditioning immersed isogeometric finite element methods with application to flow problems
    de Prenter, F.
    Verhoosel, C. V.
    van Brummelen, E. H.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 348 : 604 - 631
  • [33] Solving Interface Problems of the Helmholtz Equation by Immersed Finite Element Methods
    Lin, Tao
    Lin, Yanping
    Zhuang, Qiao
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2019, 1 (02) : 187 - 206
  • [34] A MIXED FINITE ELEMENT METHOD FOR NONLINEAR DIFFUSION EQUATIONS
    Burger, Martin
    Carrillo, Jose A.
    Wolfram, Marie-Therese
    KINETIC AND RELATED MODELS, 2010, 3 (01) : 59 - 83
  • [35] Robust a posteriori error estimates for conforming and nonconforming finite element methods for convection-diffusion problems
    Zhao, Jikun
    Chen, Shaochun
    Zhang, Bei
    Mao, Shipeng
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 264 : 346 - 358
  • [36] Error Analysis of Mixed Finite Element Methods for Nonlinear Parabolic Equations
    Gao, Huadong
    Qiu, Weifeng
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (03) : 1660 - 1678
  • [37] A Family of Two-Grid Partially Penalized Immersed Finite Element Methods for Semi-linear Parabolic Interface Problems
    Wang, Yang
    Chen, Yanping
    Huang, Yunqing
    Yi, Huaming
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (03)
  • [38] Multidomain pseudospectral methods for nonlinear convection-diffusion equations
    Ji, Yuan-yuan
    Wu, Hua
    Ma, He-ping
    Guo, Ben-yu
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2011, 32 (10) : 1255 - 1268
  • [39] FINITE-VOLUME METHODS FOR CONVECTION-DIFFUSION PROBLEMS
    STYNES, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 63 (1-3) : 83 - 90
  • [40] A Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods
    Lin, Tao
    Yang, Qing
    Zhang, Xu
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (03) : 875 - 894