Immersed finite element methods for convection diffusion equations

被引:0
|
作者
Jo, Gwanghyun [1 ]
Kwak, Do Y. [2 ]
机构
[1] Kunsan Natl Univ, Dept Math, Gunsan, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 04期
基金
新加坡国家研究基金会;
关键词
immersed finite element method; convection-diffusion problem; interface problem; control volume; upwinding scheme; INTERFACE PROBLEMS; 2-PHASE FLOW; POROUS-MEDIA; APPROXIMATION;
D O I
10.3934/math.2023407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we develop two IFEMs for convection-diffusion equations with interfaces. We first define bilinear forms by adding judiciously defined convection-related line integrals. By establishing Garding's inequality, we prove the optimal error estimates both in L2 and H1-norms. The second method is devoted to the convection-dominated case, where test functions are piecewise constant functions on vertex-associated control volumes. We accompany the so-called upwinding concepts to make the control-volume based IFEM robust to the magnitude of convection terms. The H1 optimal error estimate is proven for control-volume based IFEM. We document numerical experiments which confirm the analysis.
引用
收藏
页码:8034 / 8059
页数:26
相关论文
共 50 条
  • [21] FINITE ELEMENT METHODS FOR HJB EQUATIONS
    Boulbrachene, Messaoud
    MATHEMATICS IN SCIENCE AND TECHNOLOGY: MATHEMATICAL METHODS, MODELS AND ALGORITHMS IN SCIENCE AND TECHNOLOGY, 2011, : 259 - 290
  • [22] A posteriori error estimates for nonconforming streamline-diffusion finite element methods for convection-diffusion problems
    Zhao, Jikun
    Chen, Shaochun
    Zhang, Bei
    CALCOLO, 2015, 52 (04) : 407 - 424
  • [23] A posteriori error estimates for nonconforming streamline-diffusion finite element methods for convection-diffusion problems
    Jikun Zhao
    Shaochun Chen
    Bei Zhang
    Calcolo, 2015, 52 : 407 - 424
  • [24] The immersed finite volume element methods for the elliptic interface problems
    Ewing, RE
    Li, ZL
    Lin, T
    Lin, YP
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1999, 50 (1-4) : 63 - 76
  • [25] A Rigorous Condition Number Estimate of an Immersed Finite Element Method
    Wang, Saihua
    Wang, Feng
    Xu, Xuejun
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (02)
  • [26] Two low order characteristic finite element methods for a convection-dominated transport problem
    Shi, Dong-yang
    Wang, Xiao-Ling
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (12) : 3630 - 3639
  • [27] Finite volume methods for convection-diffusion problems
    Lazarov, RD
    Mishev, ID
    Vassilevski, PS
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 31 - 55
  • [28] Immersed finite element method
    Zhang, L
    Gerstenberger, A
    Wang, XD
    Liu, WK
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (21-22) : 2051 - 2067
  • [29] A Finite Element Splitting Method for a Convection-Diffusion Problem
    Thomee, Vidar
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (04) : 717 - 725
  • [30] Error analysis of Petrov-Galerkin immersed finite element methods
    He, Cuiyu
    Zhang, Shun
    Zhang, Xu
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 404