Immersed finite element methods for convection diffusion equations

被引:0
|
作者
Jo, Gwanghyun [1 ]
Kwak, Do Y. [2 ]
机构
[1] Kunsan Natl Univ, Dept Math, Gunsan, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 04期
基金
新加坡国家研究基金会;
关键词
immersed finite element method; convection-diffusion problem; interface problem; control volume; upwinding scheme; INTERFACE PROBLEMS; 2-PHASE FLOW; POROUS-MEDIA; APPROXIMATION;
D O I
10.3934/math.2023407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we develop two IFEMs for convection-diffusion equations with interfaces. We first define bilinear forms by adding judiciously defined convection-related line integrals. By establishing Garding's inequality, we prove the optimal error estimates both in L2 and H1-norms. The second method is devoted to the convection-dominated case, where test functions are piecewise constant functions on vertex-associated control volumes. We accompany the so-called upwinding concepts to make the control-volume based IFEM robust to the magnitude of convection terms. The H1 optimal error estimate is proven for control-volume based IFEM. We document numerical experiments which confirm the analysis.
引用
收藏
页码:8034 / 8059
页数:26
相关论文
共 50 条
  • [1] Augmented immersed finite element methods for some elliptic partial differential equations
    Ji, Haifeng
    Chen, Jinru
    Li, Zhilin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (03) : 540 - 558
  • [2] Analysis of Two-Grid Characteristic Finite Element Methods for Convection-Diffusion Equations
    Wang, Keyan
    Hu, Boxia
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [3] Superconvergence of immersed finite element methods for interface problems
    Cao, Waixiang
    Zhang, Xu
    Zhang, Zhimin
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (04) : 795 - 821
  • [4] Immersed finite element method for time fractional diffusion problems with discontinuous coefficients
    Chen, Yanping
    Li, Qingfeng
    Yi, Huaming
    Huang, Yunqing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 128 : 121 - 129
  • [5] Superconvergence of immersed finite element methods for interface problems
    Waixiang Cao
    Xu Zhang
    Zhimin Zhang
    Advances in Computational Mathematics, 2017, 43 : 795 - 821
  • [6] Immersed finite element methods for 4th order differential equations
    Lin, T.
    Lin, Y.
    Sun, W. -W.
    Wang, Z.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (13) : 3953 - 3964
  • [7] A posteriori error analysis of nonconforming finite element methods for convection-diffusion problems
    Zhang, Bei
    Chen, Shaochun
    Zhao, Jikun
    Mao, Shipeng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 321 : 416 - 426
  • [8] A New Residual Posteriori Error Estimates of Mixed Finite Element Methods for Convection-Diffusion-Reaction Equations
    Du, Shaohong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (02) : 593 - 624
  • [9] A CONSERVATIVE FLUX OPTIMIZATION FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS
    Liu, Yujie
    Wang, Junping
    Zou, Qingsong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1238 - 1262
  • [10] Variational implementation of immersed finite element methods
    Heltai, Luca
    Costanzo, Francesco
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 229 : 110 - 127