Quantifying mineral-associated organic matter in wetlands as an indicator of the degree of soil carbon protection

被引:16
|
作者
Mirabito, Anthony J. [1 ]
Chambers, Lisa G. [1 ]
机构
[1] Univ Cent Florida, Dept Biol, Aquat Biogeochem Lab, Orlando, FL 32816 USA
基金
美国食品与农业研究所;
关键词
Soil organic matter; Mineral -organic associations; Physical protection; Physical fractionation; Wetlands; STABILIZATION; PARTICULATE; NITROGEN; AGGREGATION; PERSISTENCE; MECHANISMS; RELEVANCE; FRACTIONATION; DECOMPOSITION; ACCUMULATION;
D O I
10.1016/j.geoderma.2023.116327
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
As atmospheric carbon (C) concentrations increase, so too has interest in understanding the mechanisms that preserve C within the soil organic matter (SOM). Mineral-associated organic matter (MAOM) is one pool of SOM recently shown to protect soil organic C from mineralization. However, most MAOM research has been in agriculture and forest mineral soils. Given the magnitude of soil C stored in wetlands, this study sought to determine the abundance of MAOM in wetlands. A standard method for quantifying MAOM in terrestrial soils was tested, modified, and optimized with three unique wetland soils. Using a physical fractionation method followed by a density fractionation, it was concluded that field moist soils and a dispersant were necessary for fractionating wetland soils (0-50 cm). The Bayhead Swamp soil had the greatest total C (484.07 +/- 1.25 mg C g soil-1), but the smallest MAOM pool (0.63 %); most of the C was in the light fraction as particulate organic matter (POM, >98 %). The sandy-peat Cypress Dome soil also lacked MAOM (1.09 %) and was dominated by POM (66.26 %). The silt-rich Brackish Marsh had the least total C (94.37 +/- 1.67 mg C g soil-1), but the largest fraction of protected C (24.60 % MAOM). Nitrogen (N) followed similar trends to C, except in the Brackish Marsh where nearly half the total N was MAOM. This research represents the first step in evaluating the role of MAOM in C persistence in organic-rich wetland soils; future work should consider C physical fraction, in addition to C quantity.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Subtropical forest macro-decomposers rapidly transfer litter carbon and nitrogen into soil mineral-associated organic matter
    Guoxiang Niu
    Tao Liu
    Zhen Zhao
    Xuebing Zhang
    Huiling Guan
    Xiaoxiang He
    Xiankai Lu
    Forest Ecosystems, 2024, 11 (02) : 131 - 139
  • [42] Soil organic carbon sequestration in agricultural long-term field experiments as derived from particulate and mineral-associated organic matter
    Just, Christopher
    Armbruster, Martin
    Barkusky, Dietmar
    Baumecker, Michael
    Diepolder, Michael
    Doering, Thomas F.
    Heigl, Lorenz
    Honermeier, Bernd
    Jate, Melkamu
    Merbach, Ines
    Rusch, Constanze
    Schubert, David
    Schulz, Franz
    Schweitzer, Kathlin
    Seidel, Sabine
    Sommer, Michael
    Spiegel, Heide
    Thumm, Ulrich
    Urbatzka, Peer
    Zimmer, Joerg
    Koegel-Knabner, Ingrid
    Wiesmeier, Martin
    GEODERMA, 2023, 434
  • [43] Soil macroaggregate-occluded mineral-associated organic carbon drives the response of soil organic carbon to land use change
    Fu, Zihuan
    Hu, Wei
    Beare, Mike
    Baird, David
    SOIL & TILLAGE RESEARCH, 2024, 244
  • [44] Stabilization of mineral-associated organic carbon in Pleistocene permafrost
    Martens, Jannik
    Mueller, Carsten W.
    Joshi, Prachi
    Rosinger, Christoph
    Maisch, Markus
    Kappler, Andreas
    Bonkowski, Michael
    Schwamborn, Georg
    Schirrmeister, Lutz
    Rethemeyer, Janet
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [45] Stabilization of mineral-associated organic carbon in Pleistocene permafrost
    Jannik Martens
    Carsten W. Mueller
    Prachi Joshi
    Christoph Rosinger
    Markus Maisch
    Andreas Kappler
    Michael Bonkowski
    Georg Schwamborn
    Lutz Schirrmeister
    Janet Rethemeyer
    Nature Communications, 14
  • [46] Is the characteristic composition of mineral-associated organic matter the consequence of sorption?
    Aufdenkampe, AK
    Hedges, JI
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U1796 - U1796
  • [47] Unfolding the Roles of Particulate- and Mineral-Associated Organic Carbon in Soil Microbial Communities
    Sun, Haiyan
    Sun, Fei
    Deng, Xiaoli
    Storn, Naleen
    Wan, Shubo
    FORESTS, 2025, 16 (01):
  • [48] Controls on mineral-associated organic matter formation in a degraded Oxisol
    Ye, Chenglong
    Hall, Steven J.
    Hu, Shuijin
    GEODERMA, 2019, 338 : 383 - 392
  • [49] Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient
    Robert Mikutta
    Stephanie Turner
    Axel Schippers
    Norman Gentsch
    Sandra Meyer-Stüve
    Leo M. Condron
    Duane A. Peltzer
    Sarah J. Richardson
    Andre Eger
    Günter Hempel
    Klaus Kaiser
    Thimo Klotzbücher
    Georg Guggenberger
    Scientific Reports, 9
  • [50] Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient
    Mikutta, Robert
    Turner, Stephanie
    Schippers, Axel
    Gentsch, Norman
    Meyer-Stuve, Sandra
    Condron, Leo M.
    Peltzer, Duane A.
    Richardson, Sarah J.
    Eger, Andre
    Hempel, Guenter
    Kaiser, Klaus
    Klotzbuecher, Thimo
    Guggenberger, Georg
    SCIENTIFIC REPORTS, 2019, 9 (1)