Bone cells and their role in physiological remodeling

被引:22
作者
Maciel, Gabriel Bassan Marinho [1 ,3 ]
Maciel, Roberto Marinho [2 ]
Danesi, Cristiane Cademartori [2 ]
机构
[1] Univ Fed Santa Maria, Postgrad Program Dent Sci, Santa Maria, RS, Brazil
[2] Univ Fed Santa Maria, Dept Pathol, Santa Maria, RS, Brazil
[3] Univ Fed Santa Maria, Dept Pathol, Ave Roraima 1000, BR-97015900 Santa Maria, RS, Brazil
关键词
Remodeling; Bone; Osteoclast; RANKL protein; M-CSF; Osteoblast; Osteocyte; OSTEOCLAST; BIOLOGY;
D O I
10.1007/s11033-022-08190-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Purpose: This work compiles the characteristics of bone cells involved in the physiological bone remodeling.Methods: A narrative review of the literature was performed.Results: Remodeling is a different process from modeling. Remodeling allows old or damaged bone tissue to be renewed, ensuring the maintenance of bone fracture resistance, as well as maintaining calcium and phosphorus homeostasis. We present the role of osteoclasts, a multinucleated cell with hematopoietic origin responsible for resorbing bone. The formation of osteoclasts depends on the cytokines macrophage colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL) and can be blocked by osteoprotegerin. Furthermore, this review highlights the features of osteoblasts, polarized cubic cells of mesenchymal origin that deposit bone and also covers osteocytes and bone lining cells. This review presents the five fundamental phases of bone remodeling and addresses aspects of its regulation through hormones and growth factors.Conclusions: Knowledge of the current concepts of physiological bone remodeling is necessary for the study of the different pathologies that affect the bone tissue and thus helps in the search for new therapies.
引用
收藏
页码:2857 / 2863
页数:7
相关论文
共 46 条
[1]  
Amarasekara DS, 2018, IMMUNE NETW, V18
[2]   From Osteoclast Differentiation to Osteonecrosis of the Jaw: Molecular and Clinical Insights [J].
Anesi, Alexandre ;
Generali, Luigi ;
Sandoni, Laura ;
Pozzi, Samantha ;
Grande, Alexis .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (19)
[3]  
Bonewald LF, 2017, ENDOCRIN METAB CLIN, V46, P1, DOI [10.1016/j.ec1.2016.09.003, 10.1016/j.ecl.2016.09.003]
[4]   Bone Remodeling and the Role of TRAF3 in Osteoclastic Bone Resorption [J].
Boyce, Brendan F. ;
Li, Jinbo ;
Xing, Lianping ;
Yao, Zhenqiang .
FRONTIERS IN IMMUNOLOGY, 2018, 9
[5]   Bone Biology and Physiology: Part I. The Fundamentals [J].
Buck, Donald W., II ;
Dumanian, Gregory A. .
PLASTIC AND RECONSTRUCTIVE SURGERY, 2012, 129 (06) :1314-1320
[6]   Osteoclasts: more than 'bone eaters' [J].
Charles, Julia F. ;
Aliprantis, Antonios O. .
TRENDS IN MOLECULAR MEDICINE, 2014, 20 (08) :449-459
[7]   Osteoblast-osteoclast interactions [J].
Chen, Xiao ;
Wang, Zhongqiu ;
Duan, Na ;
Zhu, Guoying ;
Schwarz, Edward M. ;
Xie, Chao .
CONNECTIVE TISSUE RESEARCH, 2018, 59 (02) :99-107
[8]   Normal Bone Anatomy and Physiology [J].
Clarke, Bart .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2008, 3 :S131-S139
[9]   Function of matrix IGF-1 in coupling bone resorption and formation [J].
Crane, Janet L. ;
Cao, Xu .
JOURNAL OF MOLECULAR MEDICINE-JMM, 2014, 92 (02) :107-115
[10]   From Stem Cells to Bone-Forming Cells [J].
Donsante, Samantha ;
Palmisano, Biagio ;
Serafini, Marta ;
Robey, Pamela G. ;
Corsi, Alessandro ;
Riminucci, Mara .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (08)