GALOIS AUTOMORPHISMS AND CLASSICAL GROUPS

被引:6
作者
Fry, A. A. Schaeffer [1 ]
Taylor, J. [2 ]
机构
[1] Metropolitan State Univ Denver, Dept Math & Stat, Denver, CO 80217 USA
[2] Univ Manchester, Dept Math, Oxford Rd, Manchester M13 9PL, Lancs, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
INDUCTIVE MCKAY CONDITION; IRREDUCIBLE CHARACTERS; REDUCTIVE GROUPS; FINITE-GROUPS; UNIPOTENT; ELEMENTS;
D O I
10.1007/s00031-022-09754-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous work, the second-named author gave a complete description of the action of automorphisms on the ordinary irreducible characters of the finite symplectic groups. We generalise this in two directions. Firstly, using work of the first-named author, we give a complete description of the action of Galois automorphisms on irreducible characters. Secondly, we extend both descriptions to cover the case of special orthogonal groups. As a consequence, we obtain explicit descriptions for the character fields of symplectic and special orthogonal groups.
引用
收藏
页码:439 / 486
页数:48
相关论文
共 51 条
[31]   Extensions of unipotent characters and the inductive McKay condition [J].
Malle, Gunter .
JOURNAL OF ALGEBRA, 2008, 320 (07) :2963-2980
[32]   Cuspidal characters and automorphisms [J].
Malle, Gunter .
ADVANCES IN MATHEMATICS, 2017, 320 :887-903
[33]   Characters of odd degree Characters of odd degree [J].
Malle, Gunter ;
Spaeth, Britta .
ANNALS OF MATHEMATICS, 2016, 184 (03) :869-908
[34]   CHARACTERS AND GENERATION OF SYLOW 2-SUBGROUPS [J].
Navarro, Gabriel ;
Rizo, Noelia ;
Fry, A. A. Schaeffer ;
Vallejo, Carolina .
REPRESENTATION THEORY, 2021, 25 :142-165
[35]   A REDUCTION THEOREM FOR THE GALOIS-MCKAY CONJECTURE [J].
Navarro, Gabriel ;
Spaeth, Britta ;
Vallejo, Carolina .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (09) :6157-6183
[36]   SYLOW SUBGROUPS, EXPONENTS, AND CHARACTER VALUES [J].
Navarro, Gabriel ;
Pham Huu Tiep .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (06) :4263-4291
[37]   Characters of relative p′-degree over normal subgroups [J].
Navarro, Gabriel ;
Pham Huu Tiep .
ANNALS OF MATHEMATICS, 2013, 178 (03) :1135-1171
[38]   Galois action on the principal block and cyclic Sylow subgroups [J].
Rizo, Noelia ;
Fry, A. A. Schaeffer ;
Vallejo, Carolina .
ALGEBRA & NUMBER THEORY, 2020, 14 (07) :1953-1979
[39]  
Ruhstorfer L., 2022, Proc. Am. Math. Soc. Ser. B, V9, P204
[40]   Galois-equivariant McKay bijections for primes dividing q-1 [J].
Schaeffer Fry, A. A. .
ISRAEL JOURNAL OF MATHEMATICS, 2022, 247 (01) :269-302