Influence of taper angle on the inner field and separation performance of a hydrocyclone

被引:0
|
作者
Wu, Zaihai [1 ,2 ]
Qi, Zhaojun [1 ]
Yu, Lu [3 ]
Kou, Yunpeng [1 ,2 ]
Luan, Liming [1 ,2 ]
Yang, Jiguang [1 ]
Jia, Haibo [1 ]
Zhu, Gengjie [1 ]
Wang, Zengjia [1 ]
Li, Guangbo [1 ]
Sheng, Yuhang [1 ]
机构
[1] Shandong Gold Min Co Ltd, Backfill Engn Lab, Yantai, Shandong, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Civil & Resource Engn, Beijing, Peoples R China
[3] Zhaoyuan 2 Middle Sch, Beijing, Peoples R China
关键词
Taper angle; separation performance; separation precision; hydrocyclone; SIMULATION; FLOW; CFD;
D O I
10.1080/19392699.2022.2064453
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Taper angle is an important factor for characterizing a hyrocyclone's separation performance. Appropriate setting of the taper angle can contribute to particle grading and separation performance of the hydrocyclone. Through numerical analysis, this study investigated the flow fields and separation performances of the hydrocyclones with different taper angles in depth. Moreover, the numerical simulation results were compared with experimental data of the conventional hydrocyclone for accuracy validation. The results showed that the tangential velocity, axial velocity, and the diameter of air core increased with the increasing taper angle. At a too large or a too small taper angle, the inner flow field would become unstable, thereby leading to the increasing number of dislocated particles and reducing the particle separation precision. For the hydrocyclone with a diameter of 75 mm, the separation precision of fine particles can be remarkably enhanced by setting the taper angle of 15 degrees, accompanied with the improvement of product quality. The present data can provide the related enterprises with favorable guidance and a theoretical foundation for further designing the taper angle of novel hydrocyclones.
引用
收藏
页码:560 / 576
页数:17
相关论文
共 50 条
  • [21] Numerical analysis on the effect of the length of arc-shaped vortex finder on the hydrocyclone's flow field and separation performance
    Li, Feng
    Liu, Peikun
    Yang, Xinghua
    Zhang, Yuekan
    Li, Xiaoyu
    Jiang, Lanyue
    Wang, Hui
    Fu, Wenxiu
    MINERALS ENGINEERING, 2021, 172
  • [22] Flow field characteristics and separation performance of multi-inlet hydrocyclone
    Zhang Y.
    Ge J.
    Liu P.
    Yang X.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (01): : 86 - 94
  • [23] The effects of the height-to-width ratio of the rectangular inlet on the flow field and separation performance by hydrocyclone
    Li, Feng
    Liu, Peikun
    Yang, Xinghua
    Zhang, Yuekan
    Jiang, Lanyue
    Wang, Hui
    INTERNATIONAL JOURNAL OF COAL PREPARATION AND UTILIZATION, 2022, 42 (10) : 3137 - 3154
  • [24] Simulation analysis on the separation performance of spiral inlet hydrocyclone
    Zhang, Yuekan
    Liu, Peikun
    Ge, Jiangbo
    Yang, Xinghua
    Yang, Meng
    Jiang, Lanyue
    INTERNATIONAL JOURNAL OF COAL PREPARATION AND UTILIZATION, 2021, 41 (07) : 474 - 490
  • [25] Performance evaluation of a hydrocyclone with a spiral rib for separation of particles
    Patra, Gayatree
    Velpuri, Bhargava
    Chakraborty, S.
    Meikap, B. C.
    ADVANCED POWDER TECHNOLOGY, 2017, 28 (12) : 3222 - 3232
  • [26] INFLUENCE OF GEOMETRIC DIMENSIONS ON THE PERFORMANCE OF A FILTERING HYDROCYCLONE: AN EXPERIMENTAL AND CFD STUDY
    Oliveira, D. C.
    Almeida, C. A. K.
    Vieira, L. G. M.
    Damasceno, J. J. R.
    Barrozo, M. A. S.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2009, 26 (03) : 575 - 582
  • [27] A Downhole Hydrocyclone for the Recovery of Natural Gas Hydrates and Desanding: The CFD Simulation of the Flow Field and Separation Performance
    Qiu, Shunzuo
    Wang, Guorong
    Wang, Leizhen
    Fang, Xing
    ENERGIES, 2019, 12 (17)
  • [28] Effects of underflow orifice diameter on the hydrocyclone separation performance with different feed size distributions
    Zhang, Caie
    Cui, Baoyu
    Wei, Dezhou
    Lu, Shuaishuai
    POWDER TECHNOLOGY, 2019, 355 : 481 - 494
  • [29] Experimental research on the separation performance of W-shaped hydrocyclone
    Jiang, Lanyue
    Liu, Peikun
    Yang, Xinghua
    Zhang, Yuekan
    Li, Xiaoyu
    Zhang, Yulong
    Wang, Hui
    POWDER TECHNOLOGY, 2020, 372 : 532 - 541
  • [30] Numerical investigation of hydrocyclone inlet configurations for improving separation performance
    Dianyu, E.
    Xu, Guangtai
    Fan, Haihan
    Cui, Jiaxin
    Tan, Cong
    Zhang, Yuhao
    Zou, Ruiping
    Kuang, Shibo
    Yu, Aibing
    POWDER TECHNOLOGY, 2024, 434