A Structure Theorem for Neighborhoods of Compact Complex Manifolds

被引:1
作者
Gong, Xianghong [1 ]
Stolovitch, Laurent [2 ,3 ]
机构
[1] Univ Wisconsin Madison, Dept Math, Madison, WI 53706 USA
[2] Univ Cote Azur, CNRS, Parc Valrose, F-06108 Nice 02, France
[3] Univ Cote Azur, Lab J A Dieudonne, UMR 7351, Parc Valrose, F-06108 Nice 02, France
关键词
Normal forms; Neighborhoods of complex manifolds; Weakly negative or positive normal bundles; Foliations; EQUIVALENCE; CLASSIFICATION; SINGULARITIES; FIBRATIONS; EMBEDDINGS;
D O I
10.1007/s12220-024-01582-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an injective map from the set of holomorphic equivalence classes of neighborhoods M of a compact complex manifold C into C-m for some m < infinity m when (TM)|(C) is fixed and the normal bundle of C in M is either weakly negative or 2-positive.
引用
收藏
页数:30
相关论文
共 27 条
[11]  
Greuel G.-M., 2007, SPRINGER MONOGRAPHS
[12]   EXTENSION PROBLEM IN COMPLEX ANALYSIS 2 - EMBEDDINGS WITH POSITIVE NORMAL BUNDLE [J].
GRIFFITHS, PA .
AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (02) :366-+
[13]  
Gunning R.C., 1966, Lectures on Riemann Surfaces
[14]   ON THE EQUIVALENCE OF IMBEDDINGS OF EXCEPTIONAL COMPLEX SPACES [J].
HIRONAKA, H ;
ROSSI, H .
MATHEMATISCHE ANNALEN, 1964, 156 (04) :313-333
[15]   ON THE CONVERGENCE OF FORMAL EQUIVALENCE BETWEEN EMBEDDINGS [J].
HIRSCHOWITZ, A .
ANNALS OF MATHEMATICS, 1981, 113 (03) :501-514
[16]   PROJECTIVE CONNECTIONS, DOUBLE FIBRATIONS, AND FORMAL NEIGHBORHOODS OF LINES [J].
HURTUBISE, JC ;
KAMRAN, N .
MATHEMATISCHE ANNALEN, 1992, 292 (03) :383-409
[17]   An application of Cartan's equivalence method to Hirschowitz's conjecture on the formal principle [J].
Hwang, Jun-Muk .
ANNALS OF MATHEMATICS, 2019, 189 (03) :979-1000
[18]  
Iljashenko JS., 1979, T SEM PETROVSK, V5, P85
[19]  
Ilyashenko YS., 1982, Trudy Moskov. Mat. Obshch, V45, P37
[20]  
Kodaira K., 2005, COMPLEX MANIFOLDS DE