An investigation of self-sensing and mechanical properties of smart engineered cementitious composites reinforced with functional materials

被引:1
作者
Al-Dahawi, Ali Majeed [1 ]
Abdullah, Raid D. [2 ]
Joni, Hasan Hamodi [1 ]
机构
[1] Univ Technol Iraq, Civil Engn Dept, Baghdad, Iraq
[2] Univ Technol Iraq, Qual Assurance & Univ Performance Dept, Baghdad, Iraq
来源
OPEN ENGINEERING | 2024年 / 14卷 / 01期
关键词
FCER; functional fillers; waste iron powder; carbon fiber; electrical resistivity; self-sensing; piezoresistivity; CARBON-FIBER;
D O I
10.1515/eng-2022-0568
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, hybrid functional fillers were used to create an electrical network that is used to develop self-damage sensing ability within conventional cementitious mixtures. This electrical network was used to examine the self-sensing properties of cementitious composites under different loading scenarios such as compression, splitting tensile, and cyclic loading for three ages, those are 7, 14, and 28. With the help of a single type of functional filler or fiber, the self-sensing capabilities of the majority of previous works are demonstrated. This study incorporates two types of functional fillers for sustainability and low cost: micro-scale carbon fibers (CF) and waste iron (Ir) powder in the form of microparticles. The purpose of the current work is to fill up the subject's gap using two different types of functional fillers as a hybrid form. Three hybrid proportions of a micro-scale CF (vol% of mixture) and waste iron powder (Ir) (wt% of cementitious materials) are utilized. These are (0.33, 15), (0.67, 10), and (1.00, 5), respectively. Unlike carbon-based materials, polyvinyl alcohol is used as a mechanical reinforcing fiber 2% by volume of the cementitious mixture. Additionally, a control combination without any fillers has been created. The electrical resistivity of the fabricated samples was monitored during various loading applications for every second to confirm their self-sensing capabilities. Regarding the fractional change in electrical resistivity, the self-sensing behavior was superior for mixes containing high dosages either of waste iron powder or CF in the same hybrid matrix. Quite the contrary to that, the piezoresistivity was modest in the middle hybrid ratio.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Assessment of self-sensing capability of Engineered Cementitious Composites within the elastic and plastic ranges of cyclic flexural loading
    Al-Dahawi, Ali
    Yildirim, Gurkan
    Ozturk, Oguzhan
    Sahmaran, Mustafa
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 145 : 1 - 10
  • [42] Electrical percolation threshold of cementitious composites possessing self-sensing functionality incorporating different carbon-based materials
    Al-Dahawi, Ali
    Sarwary, Mohammad Haroon
    Ozturk, Oguzhan
    Yildirim, Gurkan
    Akin, Arife
    Sahmaran, Mustafa
    Lachemi, Mohamed
    SMART MATERIALS AND STRUCTURES, 2016, 25 (10)
  • [43] Smart composite materials for self-sensing and self-healing
    Swait, T. J.
    Rauf, A.
    Grainger, R.
    Bailey, P. B. S.
    Lafferty, A. D.
    Fleet, E. J.
    Hand, R. J.
    Hayes, S. A.
    PLASTICS RUBBER AND COMPOSITES, 2012, 41 (4-5) : 215 - 224
  • [44] Development of 3D printable self-sensing cementitious composites
    Wang, Lining
    Aslani, Farhad
    Mukherjee, Abhijit
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 337
  • [45] Performance of 3D printed columns using self-sensing cementitious composites
    Atkinson, Cynthia D.
    Aslani, Farhad
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 375
  • [46] Exploring scalable fabrication of self-sensing cementitious composites with graphene nanoplatelets
    Ozbulut, Osman E.
    Jiang, Zhangfan
    Harris, Devin K.
    SMART MATERIALS AND STRUCTURES, 2018, 27 (11)
  • [47] Effects of graphene nanoplatelets type on self-sensing properties of cement mortar composites
    Sevim, Ozer
    Jiang, Zhangfan
    Ozbulut, Osman E.
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 359
  • [48] Self-sensing and piezoresistive performance of carbon fibre textile-reinforced cementitious composites under tensile loading
    Elseady, Amir A. E.
    Zhuge, Yan
    Ma, Xing
    Chow, Christopher W. K.
    Lee, Ivan
    Zeng, Junjie
    COMPOSITE STRUCTURES, 2025, 356
  • [49] Self-sensing high-performance ultra-lightweight engineered cementitious composites using calcined petroleum coke
    Ran, Hongyu
    Elchalakani, Mohamed
    Yehia, Sherif
    Cai, Jingming
    Yang, Bo
    JOURNAL OF CLEANER PRODUCTION, 2023, 418
  • [50] The effect of moisture and reinforcement on the self-sensing properties of hybrid-fiber-reinforced concrete
    Maier, M.
    ENGINEERING RESEARCH EXPRESS, 2020, 2 (02):