An investigation of self-sensing and mechanical properties of smart engineered cementitious composites reinforced with functional materials

被引:1
作者
Al-Dahawi, Ali Majeed [1 ]
Abdullah, Raid D. [2 ]
Joni, Hasan Hamodi [1 ]
机构
[1] Univ Technol Iraq, Civil Engn Dept, Baghdad, Iraq
[2] Univ Technol Iraq, Qual Assurance & Univ Performance Dept, Baghdad, Iraq
来源
OPEN ENGINEERING | 2024年 / 14卷 / 01期
关键词
FCER; functional fillers; waste iron powder; carbon fiber; electrical resistivity; self-sensing; piezoresistivity; CARBON-FIBER;
D O I
10.1515/eng-2022-0568
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, hybrid functional fillers were used to create an electrical network that is used to develop self-damage sensing ability within conventional cementitious mixtures. This electrical network was used to examine the self-sensing properties of cementitious composites under different loading scenarios such as compression, splitting tensile, and cyclic loading for three ages, those are 7, 14, and 28. With the help of a single type of functional filler or fiber, the self-sensing capabilities of the majority of previous works are demonstrated. This study incorporates two types of functional fillers for sustainability and low cost: micro-scale carbon fibers (CF) and waste iron (Ir) powder in the form of microparticles. The purpose of the current work is to fill up the subject's gap using two different types of functional fillers as a hybrid form. Three hybrid proportions of a micro-scale CF (vol% of mixture) and waste iron powder (Ir) (wt% of cementitious materials) are utilized. These are (0.33, 15), (0.67, 10), and (1.00, 5), respectively. Unlike carbon-based materials, polyvinyl alcohol is used as a mechanical reinforcing fiber 2% by volume of the cementitious mixture. Additionally, a control combination without any fillers has been created. The electrical resistivity of the fabricated samples was monitored during various loading applications for every second to confirm their self-sensing capabilities. Regarding the fractional change in electrical resistivity, the self-sensing behavior was superior for mixes containing high dosages either of waste iron powder or CF in the same hybrid matrix. Quite the contrary to that, the piezoresistivity was modest in the middle hybrid ratio.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Self-sensing properties of Engineered Cementitious Composites
    Huang, Yi
    Li, Hongliang
    Qian, Shunzhi
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 174 : 253 - 262
  • [2] Advanced engineered cementitious composites with combined self-sensing and self-healing functionalities
    Siad, Hocine
    Lachemi, Mohamed
    Sahmaran, Mustafa
    Mesbah, Habib A.
    Hossain, Khandakar Anwar
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 176 : 313 - 322
  • [3] Self-sensing capability of Engineered Cementitious Composites: Effects of aging and loading conditions
    Yildirim, Gurkan
    Ozturk, Oguzhan
    Al-Dahawi, Ali
    Ulu, Adem Afsin
    Sahmaran, Mustafa
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 231
  • [4] Prediction of mechanical and electrical properties of carbon fibre-reinforced self-sensing cementitious composites
    Kang, Zehao
    Aslani, Farhad
    Han, Baoguo
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20
  • [5] The Mechanical and Self-Sensing Properties of Carbon Fiber- and Polypropylene Fiber-Reinforced Engineered Cementitious Composites Utilizing Environmentally Friendly Glass Aggregate
    Ma, Lijun
    Sun, Meng
    Zhang, Yunlong
    BUILDINGS, 2024, 14 (04)
  • [6] Development of self-sensing cementitious materials
    Coulbeck, Teig S., V
    Hammond, Isaac P. G.
    Gooding, Christopher J.
    Wither, James K.
    Sterianou, Iasmi
    Soulioti, Dimitra
    Kordatos, Evangelos Z.
    SMART STRUCTURES AND NDE FOR INDUSTRY 4.0, SMART CITIES, AND ENERGY SYSTEMS, 2020, 11382
  • [7] Characterizing the electro-mechanical response of self-sensing steel-fiber-reinforced cementitious composites
    Kim, Min Kyoung
    Park, Jongwoong
    Kim, Dong Joo
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 240 (240)
  • [8] Smart Self-Healing and Self-Sensing Cementitious Composites-Recent Developments, Challenges, and Prospects
    Das, Avik K.
    Mishra, Dhanada K.
    Yu, Jing
    Leung, Christopher K. Y.
    ADVANCES IN CIVIL ENGINEERING MATERIALS, 2019, 8 (03): : 554 - 578
  • [9] Detecting crack and damage location in self-sensing fiber reinforced cementitious composites
    Huy Viet Le
    Kim, Dong Joo
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 240
  • [10] Assessment of self-sensing capability of Carbon Black Engineered Cementitious Composites
    Deng, Hanwen
    Li, Hongliang
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 173 : 1 - 9