Study on the sulfate freeze-thaw resistance of recycled coarse aggregate self-compacting concrete

被引:9
|
作者
Zheng, Chuanlei [1 ]
Li, Luoyin [2 ]
Zong, Zhouhong [1 ]
机构
[1] Southeast Univ, Engn Res Ctr Safety & Protect Explos & Impact, Minist Educ, Nanjing 211189, Peoples R China
[2] Ningxia Univ, Sch Civil & Hydraul Engn, Yinchuan 750021, Peoples R China
关键词
Recycled coarse aggregate self-compacting; concrete; Sulfate freeze3thaw; Mechanical properties; Stress3strain curve; Constitutive model; BEHAVIOR; ATTACK; PERFORMANCE;
D O I
10.1016/j.istruc.2024.105973
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Concrete buildings in outdoor environments in northern China will suffer from sulfate freeze -thaw effects yearround, which will seriously threaten the long-term safe use and service life of concrete. The construction industry is considered to be one of the key sectors for achieving sustainable development goals, and this view is widely recognized in industry and academia. In this paper, the sulfate freeze-thaw resistance values of recycled coarse aggregate self -compact concrete (RCASCC) under the influences of three recycling coarse aggregate (RCA) replacement rates, four freeze-thaw environments, and six freeze-thaw cycles were studied. It was concluded that the larger the RCA substitution rate was, the more severe the surface degradation and failure morphology of RCASCC. Among the four freeze -thaw environments, the surface deterioration of RCASCC was the most serious in the 5% MgSO4 solution freeze -thaw environment, and the surface deterioration and failure morphology of RCASCC were the slightest in the clear water freeze -thaw environment. In addition, the compressive and splitting tensile strength loss rate of RCASCC decreases the most in a 5% mass fraction MgSO4 solution freeze -thaw environment. Among the six groups of RCASCC, RCASCC with RCA substitution rate of 0 had the largest relative peak stress and the smallest relative peak strain in the clear water freeze -thaw environment. RCASCC with RCA substitution rate of 50% had the smallest relative peak stress and the largest relative peak strain in the 5% mass fraction MgSO4 solution freeze -thaw environment. The uniaxial compressive stress-strain constitutive model was used to fit the stress-strain curves of RCASCC before and after sulfate freeze-thaw cycling. The elastic modulus and Poisson's ratio values of RCASCC in the six groups decreased with increasing number of freeze-thaw cycles. The larger the substitution rate of RCA was, the smaller the elastic modulus and Poisson's ratio of RCASCC. The elastic modulus and Poisson's ratio of RCASCC in clear water freeze -thaw environment are the largest, and the elastic modulus and Poisson's ratio of RCASCC in 5% MgSO4 solution freeze -thaw environment are the smallest.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Basic Mechanical Properties of Self-Compacting Concrete Prepared with Aeolian Sand and Recycled Coarse Aggregate
    Zheng, Shiqi
    Liu, Qing
    Han, Fengxia
    Liu, Shan
    Han, Tong
    Yan, Hao
    BUILDINGS, 2024, 14 (09)
  • [22] Freeze-thaw resistance of recycled aggregate concrete damaged by simulated acid rain
    Lu, Caifeng
    Zhou, Qingsong
    Wang, Wei
    Wei, Shenghuai
    Wang, Chen
    JOURNAL OF CLEANER PRODUCTION, 2021, 280
  • [23] Self-compacting concrete with recycled concrete aggregate: Study of the long-term properties
    Manzi, Stefania
    Mazzotti, Claudio
    Bignozzi, Maria Chiara
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 157 : 582 - 590
  • [24] Durability of Structural Recycled Aggregate Concrete Subjected to Freeze-Thaw Cycles
    Santana Rangel, Caroline
    Amario, Mayara
    Pepe, Marco
    Martinelli, Enzo
    Toledo Filho, Romildo Dias
    SUSTAINABILITY, 2020, 12 (16)
  • [25] Selected Properties of Self-Compacting Concrete with Recycled PET Aggregate
    Jaskowska-Lemanska, Justyna
    Kucharska, Milena
    Matuszak, Jakub
    Nowak, Pawel
    Lukaszczyk, Wojciech
    MATERIALS, 2022, 15 (07)
  • [26] The effect of coarse aggregate gradation on the properties of self-compacting concrete
    Zhao, Hui
    Sun, Wei
    Wu, Xiaoming
    Gao, Bo
    MATERIALS & DESIGN, 2012, 40 : 109 - 116
  • [27] Study on the calcium dissolution of self-compacting recycled concrete
    Jiang, Jianhua
    Zhang, Wei
    Zhao, Kehan
    Rumongi, Blaise
    Zhao, Haitao
    Ma, Fuliang
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 421
  • [28] Performance Evolution of Recycled Aggregate Concrete under the Coupled Effect of Freeze-Thaw Cycles and Sulfate Attack
    Jia, Pu
    Li, Lang
    Zhou, Jin
    Zhang, Di
    Guan, Zhongwei
    Dong, Jiangfeng
    Wang, Qingyuan
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [29] Impermeability and Durability of Self-Compacting Concrete Prepared with Aeolian Sand and Recycled Coarse Aggregate
    Zheng, Shiqi
    Liu, Qing
    Han, Fengxia
    Liu, Shan
    Zhang, Guoxing
    Zhu, Jiayan
    MATERIALS, 2023, 16 (23)
  • [30] Effect of Coarse Aggregate on the Freeze-Thaw Durability of Pervious Concrete
    Kevern, J. T.
    Wang, K.
    Schaefer, V. R.
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2010, 22 (05) : 469 - 475