A global branch approach to normalized solutions for the Schrödinger equation

被引:14
|
作者
Jeanjean, Louis [1 ]
Zhang, Jianjun [2 ]
Zhong, Xuexiu [3 ]
机构
[1] Univ Franche Comte, CNRS, UMR 6623, LmB, F-25000 Besancon, France
[2] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
[3] South China Normal Univ, South China Res Ctr Appl Math & Interdisciplinary, Sch Math Sci, Guangzhou 510631, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2024年 / 183卷
关键词
Global branch; Schrodinger equation; Positive normalized solution; NONLINEAR SCHRODINGER-EQUATIONS; CONCENTRATION-COMPACTNESS PRINCIPLE; SCALAR FIELD-EQUATIONS; GROUND-STATES; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; UNIQUENESS; EXISTENCE; CALCULUS;
D O I
10.1016/j.matpur.2024.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence, non-existence and multiplicity of prescribed mass positive solutions to a Schr & ouml;dinger equation of the form -Delta u+lambda u=g(u),u is an element of H-1(R-N),N >= 1. Our approach permits to handle in a unified way nonlinearities g(s) which are either mass subcritical, mass critical or mass supercritical. Among its main ingredients is the study of the asymptotic behaviors of the positive solutions as lambda -> 0+ or lambda ->+infinity and the existence of an unbounded continuum of solutions in (0,+infinity)xH1(R-N).
引用
收藏
页码:44 / 75
页数:32
相关论文
共 50 条