A global branch approach to normalized solutions for the Schrödinger equation

被引:14
|
作者
Jeanjean, Louis [1 ]
Zhang, Jianjun [2 ]
Zhong, Xuexiu [3 ]
机构
[1] Univ Franche Comte, CNRS, UMR 6623, LmB, F-25000 Besancon, France
[2] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
[3] South China Normal Univ, South China Res Ctr Appl Math & Interdisciplinary, Sch Math Sci, Guangzhou 510631, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2024年 / 183卷
关键词
Global branch; Schrodinger equation; Positive normalized solution; NONLINEAR SCHRODINGER-EQUATIONS; CONCENTRATION-COMPACTNESS PRINCIPLE; SCALAR FIELD-EQUATIONS; GROUND-STATES; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; UNIQUENESS; EXISTENCE; CALCULUS;
D O I
10.1016/j.matpur.2024.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence, non-existence and multiplicity of prescribed mass positive solutions to a Schr & ouml;dinger equation of the form -Delta u+lambda u=g(u),u is an element of H-1(R-N),N >= 1. Our approach permits to handle in a unified way nonlinearities g(s) which are either mass subcritical, mass critical or mass supercritical. Among its main ingredients is the study of the asymptotic behaviors of the positive solutions as lambda -> 0+ or lambda ->+infinity and the existence of an unbounded continuum of solutions in (0,+infinity)xH1(R-N).
引用
收藏
页码:44 / 75
页数:32
相关论文
共 50 条
  • [31] Computation of excited states for the nonlinear Schrödinger equation: numerical and theoretical analysis
    Besse, Christophe
    Duboscq, Romain
    Le Coz, Stefan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2025, 59 (02) : 899 - 923
  • [32] Concentration behaviors of nodal solutions for a semiclassical Schrödinger equation
    Liu, Jiaquan
    Wang, Zhi-Qiang
    Zhao, Fukun
    JOURNAL D ANALYSE MATHEMATIQUE, 2025,
  • [33] The Existence and Stability of Normalized Solutions for a Bi-Harmonic Nonlinear Schrödinger Equation with Mixed Dispersion
    Tingjian Luo
    Shijun Zheng
    Shihui Zhu
    Acta Mathematica Scientia, 2023, 43 : 539 - 563
  • [34] MULTIPLE NORMALIZED SOLUTIONS FOR A QUASI-LINEAR SCHRODINGER EQUATION VIA DUAL APPROACH
    Zhang, Lin
    Li, Yongqing
    Wang, Zhi-qiang
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (01) : 465 - 489
  • [35] Normalized ground state solutions for critical growth Schrödinger equations with Hardy potential
    Fan, Song
    Li, Gui-Dong
    Tang, Chun-Lei
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [36] Kink Soliton Solutions in the Logarithmic Schrödinger Equation
    Scott, Tony C.
    Glasser, M. Lawrence
    MATHEMATICS, 2025, 13 (05)
  • [37] Normalized solutions and mass concentration for supercritical nonlinear Schrödinger equations
    Jianfu Yang
    Jinge Yang
    Science China Mathematics, 2022, 65 : 1383 - 1412
  • [38] Existence of normalized solutions for Schrödinger systems with linear and nonlinear couplings
    Yun, Zhaoyang
    Zhang, Zhitao
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)
  • [39] Normalized solutions for the nonlinear Schrodinger equation with and combined nonlinearities
    Kang, Jin-Cai
    Tang, Chun -Lei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 246
  • [40] Asymptotic behaviors of normalized ground states for fractional Schrödinger equations
    Lei, Jun
    Chen, Chunliu
    Wang, Yue
    ARCHIV DER MATHEMATIK, 2025, 124 (01) : 109 - 120