A global branch approach to normalized solutions for the Schrödinger equation

被引:14
|
作者
Jeanjean, Louis [1 ]
Zhang, Jianjun [2 ]
Zhong, Xuexiu [3 ]
机构
[1] Univ Franche Comte, CNRS, UMR 6623, LmB, F-25000 Besancon, France
[2] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
[3] South China Normal Univ, South China Res Ctr Appl Math & Interdisciplinary, Sch Math Sci, Guangzhou 510631, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2024年 / 183卷
关键词
Global branch; Schrodinger equation; Positive normalized solution; NONLINEAR SCHRODINGER-EQUATIONS; CONCENTRATION-COMPACTNESS PRINCIPLE; SCALAR FIELD-EQUATIONS; GROUND-STATES; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; UNIQUENESS; EXISTENCE; CALCULUS;
D O I
10.1016/j.matpur.2024.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence, non-existence and multiplicity of prescribed mass positive solutions to a Schr & ouml;dinger equation of the form -Delta u+lambda u=g(u),u is an element of H-1(R-N),N >= 1. Our approach permits to handle in a unified way nonlinearities g(s) which are either mass subcritical, mass critical or mass supercritical. Among its main ingredients is the study of the asymptotic behaviors of the positive solutions as lambda -> 0+ or lambda ->+infinity and the existence of an unbounded continuum of solutions in (0,+infinity)xH1(R-N).
引用
收藏
页码:44 / 75
页数:32
相关论文
共 50 条
  • [21] NON-RADIAL NORMALIZED SOLUTIONS FOR A NONLINEAR SCHRO spacing diaeresis DINGER EQUATION
    Tong, Zhi-Juan
    Chen, Jianqing
    Wang, Zhi-Qiang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (19) : 1 - 14
  • [22] Existence of normalized peak solutions for a coupled nonlinear Schrödinger system
    Yang, Jing
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
  • [23] Positive solutions for asymptotically linear Schrödinger equation on hyperbolic space
    Gao, Dongmei
    Wang, Jun
    Wang, Zhengping
    ADVANCES IN NONLINEAR ANALYSIS, 2025, 14 (01)
  • [24] Multiplicity and Stability of Normalized Solutions to Non-autonomous Schrödinger Equation with Mixed Non-linearities
    Li, Xinfu
    Xu, Li
    Zhu, Meiling
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2024, 67 (01) : 1 - 27
  • [25] Normalized ground states for the Sobolev critical Schrödinger equation with at least mass critical growth
    Li, Quanqing
    Radulescu, Vicentiu D.
    Zhang, Wen
    NONLINEARITY, 2024, 37 (02)
  • [26] Normalized Solutions of Non-autonomous Schrödinger Equations Involving Sobolev Critical Exponent
    Yang, Chen
    Yu, Shu-Bin
    Tang, Chun-Lei
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (09)
  • [27] Stationary solutions for the nonlinear Schrödinger equation
    Ferrario, Benedetta
    Zanella, Margherita
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025, : 1127 - 1179
  • [28] Normalized solutions for the p-Laplacian equation with a trapping potential
    Wang, Chao
    Sun, Juntao
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [29] Periodic solutions of a fractional Schrödinger equation
    Wang, Jian
    Du, Zhuoran
    APPLICABLE ANALYSIS, 2024, 103 (08) : 1540 - 1551
  • [30] Normalized Solutions of Nonhomogeneous Mass Supercritical Schrödinger Equations in Bounded Domains
    Qi, Shijie
    Zou, Wenming
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (02)