Extreme values of Dirichlet polynomials with multiplicative coefficients

被引:0
|
作者
Xu, Max Wenqiang [1 ]
Yang, Daodao [2 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Graz Univ Technol, Inst Anal & Number Theory, Kopernikusgasse 24-2, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Extreme value; Dirichlet polynomials; Resonance method; Multiplicative number theory; Random multiplicative function; RIEMANN ZETA-FUNCTION; SUMS;
D O I
10.1016/j.jnt.2023.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study extreme values of Dirichlet polynomials with multiplicative coefficients, namely 1 � DN (t) := Df, N (t) = root N n �N f (n)nit, where f is a completely multiplicative function with |f (n)| = 1 for all n is an element of N. We use Soundararajan's resonance method to produce large values of |DN (t)| uniformly for all such f. In particular, we improve a recent result of Benatar and Nishry, where they establish weaker lower bounds and only for almost all such f. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:173 / 180
页数:8
相关论文
共 50 条
  • [1] Extremal bounds for Dirichlet polynomials with random multiplicative coefficients
    Benatar, Jacques
    Nishry, Alon
    STUDIA MATHEMATICA, 2023, 272 (01) : 59 - 80
  • [2] Mean values of long Dirichlet polynomials with higher divisor coefficients
    Hamieh, Alia
    Ng, Nathan
    ADVANCES IN MATHEMATICS, 2022, 410
  • [3] ON MEAN VALUES OF DIRICHLET POLYNOMIALS
    Weber, Michel
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (03): : 529 - 534
  • [4] A dichotomy for extreme values of zeta and Dirichlet L$L$-functions
    Bondarenko, Andriy
    Darbar, Pranendu
    Hagen, Markus V. V.
    Heap, Winston
    Seip, Kristian
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (06) : 2963 - 2975
  • [5] ZEROS OF DIRICHLET POLYNOMIALS
    Roy, Arindam
    Vatwani, Akshaa
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (01) : 643 - 661
  • [6] Essential bounds of Dirichlet polynomials
    Mora, G.
    Benitez, E.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [7] A note on the Dirichlet characters of polynomials
    Zhang Wenpeng
    Wang Tingting
    MATHEMATICA SLOVACA, 2014, 64 (02) : 301 - 310
  • [8] Cauchy means of Dirichlet polynomials
    Weber, Michel J. G.
    JOURNAL OF APPROXIMATION THEORY, 2016, 204 : 61 - 79
  • [9] Essential bounds of Dirichlet polynomials
    G. Mora
    E. Benítez
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [10] Dirichlet characters of the rational polynomials
    Guo, Wenjia
    Liu, Xiaoge
    Zhang, Tianping
    AIMS MATHEMATICS, 2021, 7 (03): : 3494 - 3508