Genome-wide identification and expression profiling of the WRKY gene family reveals abiotic stress response mechanisms in Platycodon grandiflorus

被引:8
|
作者
Yu, Hanwen [1 ]
Li, Jing [1 ]
Chang, Xiangwei [1 ]
Dong, Nan [1 ]
Chen, Bowen [1 ]
Wang, Jutao [1 ]
Zha, Liangping [1 ,2 ,3 ,7 ]
Gui, Shuangying [1 ,4 ,5 ,6 ,7 ]
机构
[1] Anhui Univ Chinese Med, Coll Pharm, Hefei 230012, Peoples R China
[2] Inst Conservat & Dev Tradit Chinese Med Resources, Anhui Acad Chinese Med, Hefei 230012, Peoples R China
[3] Anhui Prov Key Lab Res & Dev Chinese Med, Hefei 230012, Peoples R China
[4] Inst Pharmaceut, Anhui Acad Chinese Med, Hefei, Peoples R China
[5] Anhui Univ Chinese Med, Anhui Prov Key Lab Pharmaceut Technol & Applicat, Hefei, Peoples R China
[6] MOE Anhui Joint Collaborat Innovat Ctr Qual Improv, Hefei, Peoples R China
[7] Anhui Univ Chinese Med, Hefei 230012, Peoples R China
基金
中国国家自然科学基金;
关键词
WRKY gene family; Abiotic stress; P; grandiflorus; DNA-BINDING; TRANSCRIPTION FACTORS; ARABIDOPSIS; DOMAIN; BIOSYNTHESIS; SUPERFAMILY; IMPROVES; ACID;
D O I
10.1016/j.ijbiomac.2023.128617
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The WRKY family of transcription factors (TFs) is an important gene family involved in abiotic stress responses. Although the roles of WRKY TFs in plant abiotic stress responses are well studied, little is known about the stressinduced changes in WRKY family in Platycodon grandiflorus. 42 PgWRKY genes in seven subgroups were identified in the P. grandiflorus genome. The content of eight platycodins in P. grandiflorus was investigated under cold, heat, and drought stresses. Platycodin D levels significantly increased under three abiotic stresses, while the content changes of other platycodins varied. Transcriptome analysis showed that different WRKY family members exhibited varied expression patterns under different abiotic stresses. PgWRKY20, PgWRKY26, and PgWRKY39 were identified as three key candidates for temperature and drought stress responses, and were cloned and analysed for sequence characteristics, gene structure, subcellular localisation, and expression patterns. The RT-qPCR results showed that PgWRKY26 expression significantly increased after heat stress for 48 h, cold stress for 6 h, and drought stress for 2 d (DS_2 d). The PgWRKY39 expression level significantly increased at DS_2 d. This study provides a theoretical basis for clarifying the molecular mechanism of the abiotic stress responses of the WRKY gene family in P. grandiflorus.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Genome-wide identification and expression profiling analysis of the trihelix gene family and response of PgGT1 under abiotic stresses in Platycodon grandiflorus
    Liu, Meiqi
    Liu, Tingxia
    Liu, Weili
    Wang, Zhen
    Kong, Lingyang
    Lu, Jiaxin
    Zhang, Zhanping
    Su, Xiaoyue
    Liu, Xiubo
    Ma, Wei
    Ren, Weichao
    GENE, 2023, 869
  • [2] Genome-wide identification and expression analysis of the OSC gene family in Platycodon grandiflorus
    Wang, Xiaoqin
    Yan, Dong
    Chen, Ling
    PEERJ, 2024, 12
  • [3] Genome-wide identification of bZIP transcription factors and their expression analysis in Platycodon grandiflorus under abiotic stress
    Wang, Zhen
    Wang, Panpan
    Cao, Huiyan
    Liu, Meiqi
    Kong, Lingyang
    Wang, Honggang
    Ren, Weichao
    Fu, Qifeng
    Ma, Wei
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [4] Genome-Wide Identification of WRKY Gene Family and Expression Analysis under Abiotic Stress in Barley
    Zheng, Junjun
    Zhang, Ziling
    Tong, Tao
    Fang, Yunxia
    Zhang, Xian
    Niu, Chunyu
    Li, Jia
    Wu, Yuhuan
    Xue, Dawei
    Zhang, Xiaoqin
    AGRONOMY-BASEL, 2021, 11 (03):
  • [5] Genome-wide identification and functional characterization of the Camelina sativa WRKY gene family in response to abiotic stress
    Yanan Song
    Hongli Cui
    Ying Shi
    Jinai Xue
    Chunli Ji
    Chunhui Zhang
    Lixia Yuan
    Runzhi Li
    BMC Genomics, 21
  • [6] Genome-wide identification and functional characterization of the Camelina sativa WRKY gene family in response to abiotic stress
    Song, Yanan
    Cui, Hongli
    Shi, Ying
    Xue, Jinai
    Ji, Chunli
    Zhang, Chunhui
    Yuan, Lixia
    Li, Runzhi
    BMC GENOMICS, 2020, 21 (01)
  • [7] Genome-wide analysis of Eucalyptus grandis WRKY genes family and their expression profiling in response to hormone and abiotic stress treatment
    Fan, Chunjie
    Yao, Hairong
    Qiu, Zhenfei
    Ma, Haibin
    Zeng, Bingshan
    GENE, 2018, 678 : 38 - 48
  • [8] Genome-wide identification of WRKY gene family members in black raspberry and their response to abiotic stresses
    Wu, Yaqiong
    Zhang, Shanshan
    Huang, Xin
    Lyu, Lianfei
    Li, Weilin
    Wu, Wenlong
    SCIENTIA HORTICULTURAE, 2022, 304
  • [9] Genome-wide identification and expression analysis of the lipoxygenase gene family in sesame reveals regulatory networks in response to abiotic stress
    Tulsi, Ishwar
    Patidar, Ishwar
    Ampasala, Dinakara Rao
    MOLECULAR BIOLOGY REPORTS, 2025, 52 (01)
  • [10] Genome-Wide Identification and Expression Profiling of the SPL Transcription Factor Family in Response to Abiotic Stress in Centipedegrass
    Kong, Dandan
    Xu, Maotao
    Liu, Siyu
    Liu, Tianqi
    Liu, Boyang
    Wang, Xiaoyun
    Dong, Zhixiao
    Ma, Xiao
    Zhao, Junming
    Lei, Xiong
    PLANTS-BASEL, 2025, 14 (01):