Frobenius Monoidal Functors of Dijkgraaf-Witten Categories and Rigid Frobenius Algebras

被引:0
|
作者
Hannah, Samuel [1 ]
Laugwitz, Robert [2 ]
Camacho, Ana Ros [1 ]
机构
[1] Cardiff Univ, Sch Math, Senghennydd Rd, Cardiff CF24 4AG, Wales
[2] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
Frobenius monoidal functor; Frobenius algebra; Dijkgraaf-Witten category; local module; modular tensor category; etale algebra; TENSOR CATEGORIES; CONSTRUCTION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a separable Frobenius monoidal functor from Z(Vect omega|H) to Z (Vect omega) for any subgroup H of G which preserves braiding and ribbon structure. As an H application, we classify rigid Frobenius algebras in Z (Vect omega G ), recovering the classification of G etale algebras in these categories by Davydov-Simmons [J. Algebra 471 (2017), 149-175, arXiv:1603.04650] and generalizing their classification to algebraically closed fields of arbitrary characteristic. Categories of local modules over such algebras are modular tensor categories by results of Kirillov-Ostrik [Adv. Math. 171 (2002), 183-227, arXiv:math.QA/0101219] in the semisimple case and Laugwitz-Walton [Comm. Math. Phys., to appear, arXiv:2202.08644] in the general case.
引用
收藏
页数:42
相关论文
共 8 条