Mathematical Modeling of the Hydrodynamic Instability and Chemical Inhibition of Detonation Waves in a Syngas-Air Mixture

被引:5
|
作者
Nikitin, Valeriy [1 ,2 ]
Mikhalchenko, Elena [1 ,2 ]
Stamov, Lyuben [1 ,2 ]
Smirnov, Nickolay [1 ,2 ]
Azatyan, Vilen [2 ]
机构
[1] Lomonosov Moscow State Univ, Moscow Ctr Fundamental & Appl Math, Leninskie Gory 1, Moscow 119991, Russia
[2] Russian Acad Sci, Fed Sci Ctr, Sci Res Inst Syst Anal, Natl Sci Ctr,Kurchatov Inst, Moscow 117218, Russia
基金
俄罗斯科学基金会;
关键词
synthesis gas; air; combustion; detonation; inhibitor; decay; cellular structure; kinetics; simulation; 76-10; HYDROGEN; COMBUSTION; TRANSITION; PROPAGATION; BEHAVIOR; CO2;
D O I
10.3390/math11244879
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents the results of the two-dimensional modeling of the hydrodynamic instability of a detonation wave, which results in the formation of an oscillating cellular structure on the wave front. This cellular structure of the wave, unstable due to its origin, demonstrates the constant statistically averaged characteristics of the cell size. The suppression of detonation propagation in synthesis gas mixtures with air using a combustible inhibitor is studied numerically. Contrary to the majority of inhibitors being either inert substances, which do not take part in the chemical reaction, or take part in chemical reaction but do not contribute to energy release, the suggested inhibitor is also a fuel, which enters into an exothermic reaction with oxygen. The unsaturated hydrocarbon propylene additive is used as an inhibitor. The dependence of the effect of the inhibitor content on the mitigation of detonation for various conditions of detonation initiation is researched. The results make it possible to determine a critical percentage of inhibitor which prevents the occurrence of detonation and the critical percentage of inhibitor which destroys a developed detonation wave.
引用
收藏
页数:15
相关论文
共 26 条
  • [1] LAMINAR BURNING VELOCITY OF NATURAL GAS/SYNGAS-AIR MIXTURE
    Cardona, Cesar
    Amell, Andres
    Burbano, Hugo
    DYNA-COLOMBIA, 2013, 80 (180): : 136 - 143
  • [2] Mathematical modeling of the chemical inhibition of the detonation of hydrogen-air mixtures
    Azatyan, V. V.
    Medvedev, S. N.
    Frolov, S. M.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 4 (02) : 308 - 320
  • [3] Scaling Factor in Continuous Spin Detonation of Syngas-Air Mixtures
    Bykovskii, F. A.
    Zhdan, S. A.
    Vedernikov, E. F.
    Samsonov, A. N.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2017, 53 (02) : 187 - 198
  • [4] Mathematical modeling of the detonation wave structure in the silane-air mixture
    Fedorov, A. V.
    Tropin, D. A.
    Fomin, P. A.
    COMBUSTION SCIENCE AND TECHNOLOGY, 2018, 190 (06) : 1041 - 1059
  • [5] Effect of combustor geometry on continuous spin detonation in syngas-air mixtures
    Bykovskii, F. A.
    Zhdan, S. A.
    Vedernikov, E. F.
    Samsonov, A. N.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2015, 51 (06) : 688 - 699
  • [6] A Comprehensive Kinetic Modeling of Ignition of Syngas-Air Mixtures at Low Temperatures and High Pressures
    Cavaliere, D. E.
    de Joannon, M.
    Sabia, P.
    Sirignano, M.
    D'Anna, A.
    COMBUSTION SCIENCE AND TECHNOLOGY, 2010, 182 (4-6) : 692 - 701
  • [7] Physical and mathematical modeling of interaction of detonation waves with inert gas plugs
    Tropin, Dmitry
    Bedarev, Igor
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2021, 72
  • [8] Numerical modeling of suppression of detonation waves in hydrogen-air mixture by system of inert particles clouds
    Tropin, Dmitry
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (66) : 28699 - 28709
  • [9] Continuous Detonation of the Liquid Kerosene—Air Mixture with Addition of Hydrogen or Syngas
    F. A. Bykovskii
    S. A. Zhdan
    E. F. Vedernikov
    Combustion, Explosion, and Shock Waves, 2019, 55 : 589 - 598
  • [10] Continuous Detonation of the Liquid Kerosene-Air Mixture with Addition of Hydrogen or Syngas
    Bykovskii, F. A.
    Zhdan, S. A.
    Vedernikov, E. F.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2019, 55 (05) : 589 - 598