EPT-Net: Edge Perception Transformer for 3D Medical Image Segmentation

被引:15
作者
Yang, Jingyi [1 ]
Jiao, Licheng [1 ]
Shang, Ronghua [1 ]
Liu, Xu [1 ]
Li, Ruiyang [2 ]
Xu, Longchang [2 ]
机构
[1] Xidian Univ, Sch Artificial Intelligence, Key Lab Intelligent Percept & Image Understanding, Minist Educ China, Xian 710071, Peoples R China
[2] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Medical image segmentation; convolu-tional neural networks; transformer; attention mechanism; ARCHITECTURE; ATTENTION;
D O I
10.1109/TMI.2023.3278461
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The convolutional neural network has achieved remarkable results in most medical image seg- mentation applications. However, the intrinsic locality of convolution operation has limitations in modeling the long-range dependency. Although the Transformer designed for sequence-to-sequence global prediction was born to solve this problem, it may lead to limited positioning capability due to insufficient low-level detail features. Moreover, low-level features have rich fine-grained information, which greatly impacts edge segmentation decisions of different organs. However, a simple CNN module is difficult to capture the edge information in fine-grained features, and the computational power and memory consumed in processing high-resolution 3D features are costly. This paper proposes an encoder-decoder network that effectively combines edge perception and Transformer structure to segment medical images accurately, called EPT-Net. Under this framework, this paper proposes a Dual Position Transformer to enhance the 3D spatial positioning ability effectively. In addition, as low-level features contain detailed information, we conduct an Edge Weight Guidance module to extract edge information by minimizing the edge information function without adding network parameters. Furthermore, we verified the effectiveness of the proposed method on three datasets, including SegTHOR 2019, Multi-Atlas Labeling Beyond the Cranial Vault and the re-labeled KiTS19 dataset called KiTS19-M by us. The experimental results show that EPT-Net has significantly improved compared with the state-of-the-art medical image segmentation method.
引用
收藏
页码:3229 / 3243
页数:15
相关论文
共 50 条
  • [31] DS-Former: A dual-stream encoding-based transformer for 3D medical image segmentation
    Zhang, Lei
    Zuo, Yi
    Jia, Yu
    Li, Dongze
    Zeng, Rui
    Li, Dong
    Chen, Junren
    Wang, Wei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 89
  • [32] Large-Kernel Attention for 3D Medical Image Segmentation
    Li, Hao
    Nan, Yang
    Del Ser, Javier
    Yang, Guang
    COGNITIVE COMPUTATION, 2024, 16 (04) : 2063 - 2077
  • [33] FDB-Net: Fusion double branch network combining CNN and transformer for medical image segmentation
    Jiang, Zhongchuan
    Wu, Yun
    Huang, Lei
    Gu, Maohua
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2024, 32 (04) : 931 - 951
  • [34] Multiscale transunet plus plus : dense hybrid U-Net with transformer for medical image segmentation
    Wang, Bo
    Wang, Fan
    Dong, Pengwei
    Li, Chongyi
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (06) : 1607 - 1614
  • [35] Hybrid transformer-CNN with boundary-awareness network for 3D medical image segmentation
    He, Jianfei
    Xu, Canhui
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28542 - 28554
  • [36] TPAFNet: Transformer-Driven Pyramid Attention Fusion Network for 3D Medical Image Segmentation
    Li, Zheng
    Zhang, Jinhui
    Wei, Siyi
    Gao, Yueyang
    Cao, Chengwei
    Wu, Zhiwei
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (11) : 6803 - 6814
  • [37] Multiscale transunet +  + : dense hybrid U-Net with transformer for medical image segmentation
    Bo Wang
    ·Fan Wang
    Pengwei Dong
    ·Chongyi Li
    Signal, Image and Video Processing, 2022, 16 : 1607 - 1614
  • [38] BTIS-Net: Efficient 3D U-Net for Brain Tumor Image Segmentation
    Liu, Li
    Xia, Kaijian
    IEEE ACCESS, 2024, 12 : 133392 - 133405
  • [39] A parallelly contextual convolutional transformer for medical image segmentation
    Feng, Yuncong
    Su, Jianyu
    Zheng, Jian
    Zheng, Yupeng
    Zhang, Xiaoli
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 98
  • [40] Hybrid transformer-CNN with boundary-awareness network for 3D medical image segmentation
    Jianfei He
    Canhui Xu
    Applied Intelligence, 2023, 53 : 28542 - 28554