Remodeling of Mitochondrial Metabolism by a Mitochondria-Targeted RNAi Nanoplatform for Effective Cancer Therapy

被引:21
作者
Xu, Rui [1 ,2 ,3 ]
Huang, Linzhuo [1 ,2 ,3 ]
Liu, Jiayu [1 ,2 ,3 ]
Zhang, Yuxuan [1 ,2 ,3 ]
Xu, Ya [1 ,2 ,3 ]
Li, Rong [4 ]
Su, Shicheng [1 ,3 ]
Xu, Xiaoding [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Med Res Ctr, Guangdong Prov Key Lab Malignant Tumor Epigenet &, Guangzhou 510120, Peoples R China
[2] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Guangzhou Key Lab Med Nanomat, Guangzhou 510120, Peoples R China
[3] Sun Yat Sen Mem Hosp, Nanhai Translat Innovat Ctr Precis Immunol, Foshan 528200, Peoples R China
[4] Univ South China, Affiliated Hosp 2, Hengyang Med Sch, Hengyang 421001, Peoples R China
基金
中国国家自然科学基金;
关键词
cancer therapy; gene regulation; mitochondria-targeting; mitochondrial metabolism; nanoparticles (NPs); NUCLEIC-ACIDS; DELIVERY; THERAPEUTICS; HALLMARKS; BARRIERS; STRATEGY; PLATFORM; GROWTH; DNA;
D O I
10.1002/smll.202305923
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Emerging evidence has demonstrated the significant contribution of mitochondrial metabolism dysfunction to promote cancer development and progression. Aberrant expression of mitochondrial genome (mtDNA)-encoded proteins widely involves mitochondrial metabolism dysfunction, and targeted regulation of their expression can be an effective strategy for cancer therapy, which however is challenged due to the protection by the mitochondrial double membrane. Herein, a mitochondria-targeted RNAi nanoparticle (NP) platform for effective regulation of mitochondrial metabolism and breast cancer (BCa) therapy is developed. This nanoplatform is composed of a hydrophilic polyethylene glycol (PEG) shell, a hydrophobic poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) core, and charged-mediated complexes of mitochondria-targeting and membrane-penetrating peptide amphiphile (MMPA) and small interfering RNA (siRNA) embedded in the core. After tumor accumulation and internalization by tumor cells, these NPs can respond to the endosomal pH to expose the MMPA/siRNA complexes, which can specifically transport siRNA into the mitochondria to down-regulate mtDNA-encoded protein expression (e.g., ATP6 and CYB). More importantly, because ATP6 down-regulation can suppress ATP production and enhance reactive oxygen species (ROS) generation to induce mitochondrial damage and mtDNA leakage into tumor tissues, the NPs can combinatorially inhibit tumor growth via suppressing ATP production and repolarizing tumor-associated macrophages (TAMs) into tumor-inhibiting M1-like macrophages by mtDNA. A mitochondria-targeted RNAi nanoparticle (NP) platform for effective regulation of mitochondrial metabolism and breast cancer (BCa) therapy is developed. This nanoplatform can specifically deliver siRNA into the mitochondria and efficiently down-regulate mtDNA-encoded ATP6 expression, leading to combinatorial inhibition of tumor growth via suppressing the energy supply for tumor cells and repolarizing tumor-associated macrophages (TAMs) into tumor-inhibiting M1-like macrophages.image
引用
收藏
页数:14
相关论文
共 50 条
[41]   The mitochondria-targeted antioxidant MitoQ, attenuates exercise-induced mitochondrial DNA damage [J].
Williamson, Josh ;
Hughes, Ciara M. ;
Cobley, James N. ;
Davison, Gareth W. .
REDOX BIOLOGY, 2020, 36
[42]   Dual-Responsive Immunomodulatory RNAi Nanoplatform for Effective Immune Checkpoint Blockade and Enhanced Cancer Immunotherapy [J].
Cao, Yuan ;
Zhao, Zixuan ;
Fang, Junyue ;
Lu, Yanan ;
Huang, Zhuoshan ;
Wu, Guo ;
Gao, Qiyuan ;
Li, Rong ;
Xu, Lei ;
Xu, Xiaoding .
ADVANCED HEALTHCARE MATERIALS, 2025, 14 (16)
[43]   Nanoplatform based on GSH-responsive mesoporous silica nanoparticles for cancer therapy and mitochondrial targeted imaging [J].
He, Hang ;
Meng, Song ;
Li, Haimin ;
Yang, Qingyuan ;
Xu, Ziqiang ;
Chen, Xueqin ;
Sun, Zhengguang ;
Jiang, Bingbing ;
Li, Cao .
MICROCHIMICA ACTA, 2021, 188 (05)
[44]   Mitochondria-Targeted Polymeric Liposomes for Pre-miRNA Imaging and Gene Therapy [J].
Meng, Xiangdan ;
Yang, Junyan ;
Sun, Sirong ;
Gao, Yijie ;
Yang, Zhou ;
Dong, Haifeng ;
Zhang, Xueji .
ANALYTICAL CHEMISTRY, 2025,
[45]   Piezocatalytic 2D WS2 Nanosheets for Ultrasound-Triggered and Mitochondria-Targeted Piezodynamic Cancer Therapy Synergized with Energy Metabolism-Targeted Chemotherapy [J].
Hoang, Quan Truong ;
Huynh, Kim Anh ;
Cao, Thuy Giang Nguyen ;
Kang, Ji Hee ;
Dang, Xuan Nghia ;
Ravichandran, Vasanthan ;
Kang, Han Chang ;
Lee, Minjong ;
Kim, Jong-Eun ;
Ko, Young Tag ;
Lee, Tae Il ;
Shim, Min Suk .
ADVANCED MATERIALS, 2023, 35 (18)
[46]   Hierarchical nanoclusters with programmed disassembly for mitochondria-targeted tumor therapy with MR imaging [J].
Xie, Congkun ;
Cen, Dong ;
Wang, Huiyang ;
Wang, Yifan ;
Wu, Yongjun ;
Han, Gaorong ;
Li, Xiang .
BIOMATERIALS SCIENCE, 2021, 9 (24) :8189-8201
[47]   Smart and hyper-fast responsive polyprodrug nanoplatform for targeted cancer therapy [J].
Xu, Xiao-Ding ;
Cheng, Yin-Jia ;
Wu, Jun ;
Cheng, Hong ;
Cheng, Si-Xue ;
Zhuo, Ren-Xi ;
Zhang, Xian-Zheng .
BIOMATERIALS, 2016, 76 :238-249
[48]   A Less-is-More Strategy for Mitochondria-Targeted Photodynamic Therapy of Rheumatoid Arthritis [J].
Zuo, Qingting ;
Lyu, Jiayan ;
Shen, Xinran ;
Wang, Fengju ;
Xing, Liyun ;
Zhou, Minglu ;
Zhou, Zhou ;
Li, Lian ;
Huang, Yuan .
SMALL, 2024, 20 (25)
[49]   A Mitochondria-Targeted Photosensitizer Showing Improved Photodynamic Therapy Effects Under Hypoxia [J].
Lv, Wen ;
Zhang, Zhang ;
Zhang, Kenneth Yin ;
Yang, Huiran ;
Liu, Shujuan ;
Xu, Aqiang ;
Guo, Song ;
Zhao, Qiang ;
Huang, Wei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (34) :9947-9951
[50]   Oxygen tank for synergistic hypoxia relief to enhance mitochondria-targeted photodynamic therapy [J].
Li, Xianghui ;
Wang, Haoran ;
Li, Zhiyan ;
Li, Dandan ;
Lu, Xiaofeng ;
Ai, Shichao ;
Dong, Yuxiang ;
Liu, Song ;
Wu, Jinhui ;
Guan, Wenxian .
BIOMATERIALS RESEARCH, 2022, 26 (01)